首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bamboo sharks (Chiloscyllium plagiosum) are primarily benthic and use their relatively flexible pectoral and pelvic fins to rest on and move about the substrate. We examined the morphology of the pectoral fins and investigated their locomotory function to determine if pectoral fin function during both benthic station-holding and pelagic swimming differs from fin function described previously in leopard sharks, Triakis semifasciata. We used three-dimensional kinematics and digital particle image velocimetry (DPIV) to quantify pectoral fin function in five white-spotted bamboo sharks, C. plagiosum, during four behaviors: holding station on the substrate, steady horizontal swimming, and rising and sinking during swimming. During benthic station-holding in current flow, bamboo sharks decrease body angle and adjust pectoral fin angle to shed a clockwise fluid vortex. This vortex generates negative lift more than eight times that produced during open water vertical maneuvering and also results in an upstream flow that pushes against the posterior surface of the pectoral fin to oppose drag. In contrast, there is no evidence of significant lift force in the wake of the pectoral fin during steady horizontal swimming. The pectoral fin is held concave downward and at a negative dihedral angle during steady horizontal swimming, promoting maneuverability rather than stability, although this negative dihedral angle is much less than that observed previously in sturgeon and leopard sharks. During sinking, the pectoral fins are held concave upward and shed a clockwise vortex with a negative lift force, while in rising the pectoral fin is held concave downward and sheds a counterclockwise vortex with a positive lift force. Bamboo sharks appear to sacrifice maneuverability for stability when locomoting in the water column and use their relatively flexible fins to generate strong negative lift forces when holding position on the substrate and to enhance stability when swimming in the water column.  相似文献   

2.
To gain insight into the function of the dorsal fins in white-spotted bamboo sharks (Orectolobiformes: Hemiscyillidae) during steady swimming, data on three-dimensional kinematics and electromyographic recordings were collected. Bamboo sharks were induced to swim at 0.5 and 0.75 body lengths per second in a laminar flow tank. Displacement, lag and angles were analyzed from high-speed video images. Onset, offset, duration, duty cycle and asynchrony index were calculated from three muscle implants on each side of each dorsal fin. The dorsal fins were displaced more laterally than the undulating body. In addition, the dorsal tips had larger lateral displacement than the trailing edges. Increased speed was accompanied by an increase in tail beat frequency with constant tail beat amplitude. However, lateral displacement of the fins and duration of muscle bursts remained relatively constant with increased speed. The range of lateral motion was greater for the second dorsal fin (mean 33.3°) than for the first dorsal fin (mean 28.4°). Bending within the fin was greater for the second dorsal fin (mean 43.8°) than for the first dorsal fin (mean 30.8°). Muscle onset and offset among implants on the same side of each dorsal fin was similar. Three-dimensional conformation of the dorsal fins was caused by interactions between muscle activity, material properties, and incident flow. Alternating bilateral activity occurred in both dorsal fins, further supporting the active role of these hydrofoils in thrust production during steady swimming. The dorsal fins in bamboo sharks are capable of thrust production during steady swimming and do not appear to function as stabilizing structures.  相似文献   

3.
The functional significance of finlets on the steady swimming performance of yellowfin tuna Thunnus albacares was evaluated by measuring the speed and tail‐beat frequency of the fish with and without them. It was hypothesized that if finlets do improve swimming performance, fish without finlets would have to work harder to maintain the same swimming speed as fish with them and that this would be reflected in kinematic differences. Two‐way ANOVA showed significant effects between individuals on speed (d.f. = 5 and 228, P  < 0·001) and tail‐beat frequency (d.f. = 5 and 48, P  < 0·001), but no significant effects of treatment on speed (d.f. = 1 and 228, P  = 0·25) and tail‐beat frequency (d.f. = 1 and 48, P  > 0·1). No interaction effects on speed (d.f. = 5 and 228, P  > 0·1) and tail‐beat frequency (d.f. = 5 and 48, P  > 0·25) were found. This suggested that finlets were unlikely to function as significant drag reduction and thrust enhancing devices in routine steady swimming. Though not statistically significant, small percentage differences between the mean swimming speeds and tail‐beat frequency of the untreated and treated groups (fish with and without finlets respectively) of the order of 0·5% may be meaningful over the life of a fish. Also, finlets may improve performance at high sustained speeds in rapid accelerations and turns.  相似文献   

4.
Kinematic data of high spatial and temporal resolution, acquired from image sequences of adult long-finned squid, Loligo pealei, during steady swimming in a flume, were used to examine the role of fins and the coordination between fin and jet propulsion in squid locomotion. Fin shape and body outlines were digitized and used to calculate fin wave speed, amplitude, frequency, angle of attack, body deformation, speed, and acceleration. L. pealei were observed to have two fin gait patterns with a transition at 1.4-1.8 mantle lengths per second (Lm s-1) marked by alternation between the two patterns. Fin motion in L. pealei exhibited characteristics of both traveling waves and flapping wings. At low speeds, fin motion was more wave-like; at high speeds, fin motion was more flap-like and was marked by regular periods during which the fins were wrapped tightly against the mantle. Fin cycle frequencies were dependent on swimming speed and gait, and obvious coordination between the fins and jet were observed. Fin wave speed, angle of attack, and body acceleration confirmed the role of fins in thrust production and revealed a role of fins at all swimming speeds by a transition from drag-based to lift-based thrust when fin wave speed dropped below swimming speed. Estimates of peak fin thrust were as high as 0.44-0.96 times peak jet thrust in steady swimming over the range of swimming speeds observed. Fin downstrokes generally contributed more to thrust than did upstrokes, especially at high speeds.  相似文献   

5.
In fishes the shape of the body and the swimming mode generally are correlated. Slender-bodied fishes such as eels, lampreys, and many sharks tend to swim in the anguilliform mode, in which much of the body undulates at high amplitude. Fishes with broad tails and a narrow caudal peduncle, in contrast, tend to swim in the carangiform mode, in which the tail undulates at high amplitude. Such fishes also tend to have different wake structures. Carangiform swimmers generally produce two staggered vortices per tail beat and a strong downstream jet, while anguilliform swimmers produce a more complex wake, containing at least two pairs of vortices per tail beat and relatively little downstream flow. Are these differences a result of the different swimming modes or of the different body shapes, or both? Disentangling the functional roles requires a multipronged approach, using experiments on live fishes as well as computational simulations and physical models. We present experimental results from swimming eels (anguilliform), bluegill sunfish (carangiform), and rainbow trout (subcarangiform) that demonstrate differences in the wakes and in swimming performance. The swimming of mackerel and lamprey was also simulated computationally with realistic body shapes and both swimming modes: the normal carangiform mackerel and anguilliform lamprey, then an anguilliform mackerel and carangiform lamprey. The gross structure of simulated wakes (single versus double vortex row) depended strongly on Strouhal number, while body shape influenced the complexity of the vortex row, and the swimming mode had the weakest effect. Performance was affected even by small differences in the wakes: both experimental and computational results indicate that anguilliform swimmers are more efficient at lower swimming speeds, while carangiform swimmers are more efficient at high speed. At high Reynolds number, the lamprey-shaped swimmer produced a more complex wake than the mackerel-shaped swimmer, similar to the experimental results. Finally, we show results from a simple physical model of a flapping fin, using fins of different flexural stiffness. When actuated in the same way, fins of different stiffnesses propel themselves at different speeds with different kinematics. Future experimental and computational work will need to consider the mechanisms underlying production of the anguilliform and carangiform swimming modes, because anguilliform swimmers tend to be less stiff, in general, than are carangiform swimmers.  相似文献   

6.
Volumetric imaging of fish locomotion   总被引:1,自引:0,他引:1  
Fishes use multiple flexible fins in order to move and maintain stability in a complex fluid environment. We used a new approach, a volumetric velocimetry imaging system, to provide the first instantaneous three-dimensional views of wake structures as they are produced by freely swimming fishes. This new technology allowed us to demonstrate conclusively the linked ring vortex wake pattern that is produced by the symmetrical (homocercal) tail of fishes, and to visualize for the first time the three-dimensional vortex wake interaction between the dorsal and anal fins and the tail. We found that the dorsal and anal fin wakes were rapidly (within one tail beat) assimilated into the caudal fin vortex wake. These results show that volumetric imaging of biologically generated flow patterns can reveal new features of locomotor dynamics, and provides an avenue for future investigations of the diversity of fish swimming patterns and their hydrodynamic consequences.  相似文献   

7.
Kinematic data of high spatial and temporal resolution, acquired from image sequences of adult long-finned squid, Loligo pealei, during steady swimming in a flume, were used to examine the role of fins and the coordination between fin and jet propulsion in squid locomotion. Fin shape and body outlines were digitized and used to calculate fin wave speed, amplitude, frequency, angle of attack, body deformation, speed, and acceleration. L. pealei were observed to have two fin gait patterns with a transition at 1.4-1.8 mantle lengths per second (Lm s-1) marked by alternation between the two patterns. Fin motion in L. pealei exhibited characteristics of both traveling waves and flapping wings. At low speeds, fin motion was more wave-like; at high speeds, fin motion was more flap-like and was marked by regular periods during which the fins were wrapped tightly against the mantle. Fin cycle frequencies were dependent on swimming speed and gait, and obvious coordination between the fins and jet were observed. Fin wave speed, angle of attack, and body acceleration confirmed the role of fins in thrust production and revealed a role of fins at all swimming speeds by a transition from drag-based to lift-based thrust when fin wave speed dropped below swimming speed. Estimates of peak fin thrust were as high as 0.44-0.96 times peak jet thrust in steady swimming over the range of swimming speeds observed. Fin downstrokes generally contributed more to thrust than did upstrokes, especially at high speeds.  相似文献   

8.
The median fins of fishes consist of the dorsal, anal, and caudal fins and have long been thought to play an important role in generating locomotor force during both steady swimming and maneuvering. But the orientations and magnitudes of these forces, the mechanisms by which they are generated, and how fish modulate median fin forces have remained largely unknown until the recent advent of Digital Particle Image Velocimetry (DPIV) which allows empirical analysis of force magnitude and direction. Experimental hydrodynamic studies of median fin function in fishes are of special utility when conducted in a comparative phylogenetic context, and we have examined fin function in four ray-finned fish clades (sturgeon, trout, sunfish, and mackerel) with the goal of testing classical hypotheses of fin function and evolution. In this paper we summarize two recent technical developments in DPIV methodology, and discuss key recent findings relevant to median fin function. High-resolution DPIV using a recursive local-correlation algorithm allows quantification of small vortices, while stereo-DPIV permits simultaneous measurement of x, y, and z flow velocity components within a single planar light sheet. Analyses of median fin wakes reveal that lateral forces are high relative to thrust force, and that mechanical performance of median fins (i.e., thrust as a proportion of total force) averages 0.35, a surprisingly low value. Large lateral forces which could arise as an unavoidable consequence of thrust generation using an undulatory propulsor may also enhance stability and maneuverability. Analysis of hydrodynamic function of the soft dorsal fin in bluegill sunfish shows that a thrust wake is generated that accounts for 12% of total thrust and that the thrust generation by the caudal fin may be enhanced by interception of the dorsal fin wake. Integration of experimental studies of fin wakes, computational approaches, and mechanical models of fin function promise understanding of instantaneous forces on fish fins during the propulsive cycle as well as exploration of a broader locomotor design space and its hydrodynamic consequences.  相似文献   

9.
Negatively-buoyant Atlantic mackerel, Scomber scombrus L., (fork length 30–39 cm) tilt their bodies with the head up while swimming at speeds below 0.8 body length per second (B.L. s−1). This behaviour is quantitatively described by the body attack angle and swimming speed measured from film records. The maximum recorded body attack angle was 27° in a 32 cm-long fish swimming at 0.45 B.L. s−1 while its nose followed a course close to the horizontal. In general, larger body attack angles were shown at lower swimming speeds and were associated with denser bodies at each speed. We consider that this behaviour pattern allows the fish to maintain a chosen swimming depth while its body creates lift by acting as a hydrofoil. Lift from the fins is insufficient at low swimming speeds.  相似文献   

10.
Ecomorphology of Locomotion in Labrid Fishes   总被引:8,自引:0,他引:8  
The Labridae is an ecologically diverse group of mostly reef associated marine fishes that swim primarily by oscillating their pectoral fins. To generate locomotor thrust, labrids employ the paired pectoral fins in motions that range from a fore-aft rowing stroke to a dorso-ventral flapping stroke. Species that emphasize one or the other behavior are expected to benefit from alternative fin shapes that maximize performance of their primary swimming behavior. We document the diversity of pectoral fin shape in 143 species of labrids from the Great Barrier Reef and the Caribbean. Pectoral fin aspect ratio ranged among species from 1.12 to 4.48 and showed a distribution with two peaks at about 2.0 and 3.0. Higher aspect ratio fins typically had a relatively long leading edge and were narrower distally. Body mass only explained 3% of the variation in fin aspect ratio in spite of four orders of magnitude range and an expectation that the advantages of high aspect ratio fins and flapping motion are greatest at large body sizes. Aspect ratio was correlated with the angle of attachment of the fin on the body (r = 0.65), indicating that the orientation of the pectoral girdle is rotated in high aspect ratio species to enable them to move their fin in a flapping motion. Field measures of routine swimming speed were made in 43 species from the Great Barrier Reef. Multiple regression revealed that fin aspect ratio explained 52% of the variation in size-corrected swimming speed, but the angle of attachment of the pectoral fin only explained an additional 2%. Labrid locomotor diversity appears to be related to a trade-off between efficiency of fast swimming and maneuverability in slow swimming species. Slow swimmers typically swim closer to the reef while fast swimmers dominate the water column and shallow, high-flow habitats. Planktivory was the most common trophic associate with high aspect ratio fins and fast swimming, apparently evolving six times.  相似文献   

11.
Ray‐finned fishes are notable for having flexible fins that allow for the control of fluid forces. A number of studies have addressed the muscular control, kinematics, and hydrodynamics of flexible fins, but little work has investigated just how flexible ray‐finned fish fin rays are, and how flexibility affects their response to environmental perturbations. Analysis of pectoral fin rays of bluegill sunfish showed that the more proximal portion of the fin ray is unsegmented while the distal 60% of the fin ray is segmented. We examined the range of motion and curvatures of the pectoral fin rays of bluegill sunfish during steady swimming, turning maneuvers, and hovering behaviors and during a vortex perturbation impacting the fin during the fin beat. Under normal swimming conditions, curvatures did not exceed 0.029 mm?1 in the proximal, unsegmented portion of the fin ray and 0.065 mm?1 in the distal, segmented portion of the fin ray. When perturbed by a vortex jet traveling at approximately 1 ms?1 (67 ± 2.3 mN s.e. of force at impact), the fin ray underwent a maximum curvature of 9.38 mm?1. Buckling of the fin ray was constrained to the area of impact and did not disrupt the motion of the pectoral fin during swimming. Flexural stiffness of the fin ray was calculated to be 565 × 10?6 Nm2. In computational fluid dynamic simulations of the fin‐vortex interaction, very flexible fin rays showed a combination of attraction and repulsion to impacting vortex dipoles. Due to their small bending rigidity (or flexural stiffness), impacting vortices transferred little force to the fin ray. Conversely, stiffer fin rays experienced rapid small‐amplitude oscillations from vortex impacts, with large impact forces all along the length of the fin ray. Segmentation is a key design feature of ray‐finned fish fin rays, and may serve as a means of making a flexible fin ray out of a rigid material (bone). This flexibility may offer intrinsic damping of environmental fluid perturbations encountered by swimming fish. J. Morphol. 274:1044–1059, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

12.
Over the past century, many ideas have been developed on the relationships between water flow and the structure and shape of the body and fins of fishes, largely during swimming in relatively steady flows. However, both swimming by fishes and the habitats they occupy are associated with vorticity, typically concentrated as eddies characteristic of turbulent flow. Deployment of methods to examine flow in detail suggests that vorticity impacts the lives of fishes. First, vorticity near the body and fins can increase thrust and smooth variations in thrust that are a consequence of using oscillating and undulating propulsors to swim. Second, substantial mechanical energy is dissipated in eddies in the wake and adaptations that minimize these losses would be anticipated. We suggest that such mechanisms may be found in varying the length of the propulsive wave, stiffening propulsive surfaces, and shifting to using median and paired fins when swimming at low speeds. Eddies in the flow encountered by fishes may be beneficial, but when eddy radii are of the order of 0.25 of the fish's total length, negative impacts occur due to greater difficulties in controlling stability. The archetypal streamlined "fish" shape reduces destabilizing forces for fishes swimming into eddies.  相似文献   

13.
A system for staging A. maculatum during growth and metamorphosis was devised, based on several parameters of body size; body length, tail length and tail width. Animals at various stages of metamorphosis were employed to study the relationship between specific biochemical and histological changes that occur in the tail of this urodele during metamorphosis. The specific and total activity of two hydrolytic enzymes, acid phosphatase and beta-N-acetyl-glucosaminidase, were measured in tail tissues at progressive stages of development. The activities of these enzymes increased in both the fins and muscular portion of the tail during metamorphosis. These activities can be correlated with resorption of the tail fins and the remodeling of tissues in the muscular portion of the tail.  相似文献   

14.
Zebrafish larvae show a robust behavior called rheotaxis, whereby they use their lateral line system to orient upstream in the presence of a steady current. At 5 days post fertilization, rheotactic larvae can detect and initiate a swimming burst away from a continuous point-source of suction. Burst distance and velocity increase when fish initiate bursts closer to the suction source where flow velocity is higher. We suggest that either the magnitude of the burst reflects the initial flow stimulus, or fish may continually sense flow during the burst to determine where to stop. By removing specific neuromasts of the posterior lateral line along the body, we show how the location and number of flow sensors play a role in detecting a continuous suction source. We show that the burst response critically depends on the presence of neuromasts on the tail. Flow information relayed by neuromasts appears to be involved in the selection of appropriate behavioral responses. We hypothesize that caudally located neuromasts may be preferentially connected to fast swimming spinal motor networks while rostrally located neuromasts are connected to slow swimming motor networks at an early age.  相似文献   

15.
The purpose of this study was to analyze the hydrodynamic characteristics of a realistic model of an elite swimmer hand/forearm using three-dimensional computational fluid dynamics techniques. A three-dimensional domain was designed to simulate the fluid flow around a swimmer hand and forearm model in different orientations (0°, 45°, and 90° for the three axes Ox, Oy and Oz). The hand/forearm model was obtained through computerized tomography scans. Steady-state analyses were performed using the commercial code Fluent. The drag coefficient presented higher values than the lift coefficient for all model orientations. The drag coefficient of the hand/forearm model increased with the angle of attack, with the maximum value of the force coefficient corresponding to an angle of attack of 90°. The drag coefficient obtained the highest value at an orientation of the hand plane in which the model was directly perpendicular to the direction of the flow. An important contribution of the lift coefficient was observed at an angle of attack of 45°, which could have an important role in the overall propulsive force production of the hand and forearm in swimming phases, when the angle of attack is near 45°.  相似文献   

16.
The family Otariidae comprises the only group of marine mammals that habitually use their pectoral appendages to generate propulsive forces during swimming. This method of propulsion was examined in the California sea lion ( Zalophus californianus ), a representative member of the family. High-speed films were taken as a sea lion swam against a water current generated inside a large flow channel. Thrust production was determined by examining the body's movement at various stages of the propulsive cycle. Sea lions generate thrust continuously throughout the stroke. Over its initial three-quarters, foreflippers act as hydrofoils creating forward thrust and lift as they move vertically through the water. Thrust production is greatest, however, near the end of the stroke, when flippers are used as paddles and are oriented broad side to the oncoming flow. The force generated by this three-phased system of propulsion is likely to be greater than that attainable by either an exclusively lift-based hydrofoil or drag-based paddling style of swimming.
The kinematic changes that enable sea lions to change speed were also investigated. Film records revealed that stroke amplitude became greater with speed, although total stroke duration remained essentially constant. Sea lions increase stroke frequency with velocity but large variations in the measured values suggest that changes in amplitude and flipper angle of attack are also important parameters for modulating swimming speed.  相似文献   

17.
Locomotor Patterns in the Evolution of Actinopterygian Fishes   总被引:9,自引:5,他引:4  
SYNOPSIS. Locomotor adaptations in actinopterygian fishes aredescribed for (a) caudal propulsion, used in cruising and sprintswimming, acceleration, and fast turns and (b) median and pairedfin propulsion used for slow swimming and in precise maneuver.Caudal swimming is subdivided into steady (time independent)and unsteady (time dependent acceleration and turning) locomotion. High power caudal propulsion is the major theme in actinopterygianswimming morphology because of its role in predator evasionand food capture. Non-caudal slow swimming appears to be secondaryand is not exploited before the Acanthopterygii. Optimal morphological requirements for unsteady swimming are(a) large caudal fin and general body area, (b) deep caudalpeduncle, often enhanced by posterior dorsal and anal fins,(c) an anterior stabilizing body mass and\or added mass, (d)flexible body and (e) large ratio of muscle mass to body mass.Optimal morphological requirements for steady swimming are (a)high aspect ratio caudal fin, (b) narrow caudal peduncle, (c)small total caudal area, (d) anterior stabilizing body massand added mass, and (e) a stiff body. Small changes in morphologycan have large effects on performance. Exclusive morphological requirements for steady versus unsteadyswimming are partially overcome using collapsible fins, butcompromises remain necessary. Morphologies favoring unsteadyperformance are a recurring theme in actinopterygian evolution.Successive radiations at chondrostean, halecostome and teleosteanlevels are associated with modifications in the axial and caudalskeleton. Strength of ossified structures probably limited maximum propulsionforces early in actinopterygian evolution, so that specializationsfor fast cruising (carangiform and thunmform modes) followedstructural advances especially in the caudal skeleton. No suchlimits apply to eel-like forms which consequently recur in successiveactinopterygian radiations. Slow swimming using mainly non-caudal propulsion probably firstoccurred among neopterygians in association with reduced andneutral buoyancy. Slow swimming adaptations can add to and extendthe scope of caudal swimming, but specialization is associatedwith reduced caudal swimming performance. Marked exploitationof slow swimming opportunities does not occur prior to the anterodorsallocation of pectoral and pelvic girdles and the vertical rotationof the base of the pectoral fin, as found in the Acanthopterygii.  相似文献   

18.
Eel locomotion is considered typical of the anguilliform swimming mode of elongate fishes and has received substantial attention from various perspectives such as swimming kinematics, hydrodynamics, muscle physiology, and computational modeling. In contrast to the extensive knowledge of swimming mechanics, there is limited knowledge of the internal body morphology, including the body components that contribute to this function. In this study, we conduct a morphological analysis of the collagenous connective tissue system, i.e., the myosepta and skin, and of the red muscle fibers that sustain steady swimming, focusing on the interconnections between these systems, such as the muscle-tendon and myosepta-skin connections. Our aim is twofold: (1) to identify the morphological features that distinguish this anguilliform swimmer from subcarangiform and carangiform swimmers, and (2) to reveal possible pathways of muscular force transmission by the connective tissue in eels. To detect gradual morphological changes along the trunk we investigated anterior (0.4L), midbody (0.6L), and posterior body positions (0.75L) using microdissections, histology, and three-dimensional reconstructions. We find that eel myosepta have a mediolaterally oriented tendon in each the epaxial and hypaxial regions (epineural or epipleural tendon) and two longitudinally oriented tendons (myorhabdoid and lateral). The latter two are relatively short (4.5-5% of body length) and remain uniform along a rostrocaudal gradient. The skin and its connections were additionally analyzed using scanning electron microscopy (SEM). The stratum compactum of the dermis consists of approximately 30 layers of highly ordered collagen fibers of alternating caudodorsal and caudoventral direction, with fiber angles of 60.51 +/- 7.05 degrees (n = 30) and 57.58 +/- 6.92 degrees (n = 30), respectively. Myosepta insert into the collagenous dermis via fiber bundles that pass through the loose connective tissue of the stratum spongiosum of the dermis and either weave into the layers of the stratum compactum (weaving fiber bundles) or traverse the stratum compactum (transverse fiber bundles). These fiber bundles are evenly distributed along the insertion line of the myoseptum. Red muscles insert into lateral and myorhabdoid myoseptal tendons but not into the horizontal septum or dermis. Thus, red muscle forces might be distributed along these tendons but will only be delivered indirectly into the dermis and horizontal septum. The myosepta-dermis connections, however, appear to be too slack for efficient force transmission and collagenous connections between the myosepta and the horizontal septum are at obtuse angles, a morphology that appears inadequate for efficient force transmission. Though the main modes of undulatory locomotion (anguilliform, subcarangiform, and carangiform) have recently been shown to be very similar with respect to their midline kinematics, we are able to distinguish two morphological classes with respect to the shape and tendon architecture of myosepta. Eels are similar to subcarangiform swimmers (e.g., trout) but are substantially different from carangiform swimmers (e.g., mackerel). This information, in addition to data from kinematic and hydrodynamic studies of swimming, shows that features other than midline kinematics (e.g., wake patterns, muscle activation patterns, and morphology) might be better for describing the different swimming modes of fishes.  相似文献   

19.
20.
The role of the pectoral fins in body trim of sharks   总被引:1,自引:0,他引:1  
In a large aquarium the leopard shark Triakis semifasciata , sand tiger shark Odontaspis taurus , sandbar shark Carcharhinus plumbeus , and spiny dogfish Squalus acanthias cruised steadily at 0·1-0·7 body lengths s-1. Relative to the trajectory of the shark, the pectoral fins were maintained at a positive angle of ttack regardless of vertical direction. For level swimming the mean angle of attack for the pectoral fin was 11±1·7, 10·1±1·3°, 9·3±1·3°, and 15·0±0·0 for T. semifasciata , C. plumbeus , O. taurus , and S. acanthias , respectively. The long axis of the body was canted at an angle of attack for T. semifasciata and S. acanthias , but trim was maintained during level swimming for C. plumbeus and O. taurus . Hydrodynamic analysis of the body and fin design of T. semifasciata indicated that the pectoral fins could develop suffcient pitching moment to maintain depth and keep the body in trim. Demonstration of positive angles of attack support the hypothesis that lift is generated in the anterior body to counterbalance the lift produced by the heterocercal tail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号