首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Remarkably preserved specimens of Cowralepis mclachlani Ritchie, 2005 (Proc Linn Soc NSW 126:215–259) (Phyllolepida, Placodermi) represent a unique ontogenetic sequence adding to our understanding of anatomy, function, and phylogeny among basal jawed vertebrates (gnathostomes). A systematic review demonstrates that the Phyllolepida are a subgroup of the Arthrodira. Consideration of visceral and neurocranial characters supports the hypothesis that placoderms are the sister group to remaining gnathostomes. Placoderms possess, as adult plesiomorphic features, a number of characters that are only seen in the development of extant gnathostomes—a peramorphic shift relative to placoderms. Developmental evidence in vertebrates leads to a revised polarity of character transitions. These include 1) hyomandibula‐neurocranium and ventral parachordal‐palatoquadrate articulations (vertebrate synapomorphies); 2) jointed pharynx, paired basibranchials, anterior ethmoidal‐palatoquadrate articulation, short trabeculae cranii, and anterior and posterior neurocranial fissures (gnathostome synapomorphies); and 3) fused basibranchials, dorsal palatoquadrate‐neurocranium articulation, loss of the anterior neurocranial fissure, elongated trabeculae cranii, and transfer of the ventral parachordal‐palatoquadrate articulation to the trabeculae (crown group gnathostomes). The level of preservation in C. mclachlani provides the basis for a reinterpretation of phyllolepid anatomy and function. Cowralepis mclachlani possesses paired basibranchials allowing the reinterpretation of the visceral skeleton in other placoderms. Mandible depression in C. mclachlani follows an osteichthyan pattern and the ventral visceral skeleton acts as a functional unit. Evidence for hypobranchial musculature demonstrates the neural crest origin of the basibranchials and that Cowralepis was a suction feeder. Finally, the position of the visceral skeleton relative to the neurocranium in placoderms parallels the condition in selachians and osteichthyans, but differs in the elongation of the occiput. The cucullaris fossa of placoderms (interpreted as a site of muscle attachment) is shown to represent, in part, the parabranchial chamber. J. Morphol., 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
Zhu M  Yu X  Choo B  Qu Q  Jia L  Zhao W  Qiao T  Lu J 《PloS one》2012,7(4):e35103

Background

The pectoral and pelvic girdles support paired fins and limbs, and have transformed significantly in the diversification of gnathostomes or jawed vertebrates (including osteichthyans, chondrichthyans, acanthodians and placoderms). For instance, changes in the pectoral and pelvic girdles accompanied the transition of fins to limbs as some osteichthyans (a clade that contains the vast majority of vertebrates – bony fishes and tetrapods) ventured from aquatic to terrestrial environments. The fossil record shows that the pectoral girdles of early osteichthyans (e.g., Lophosteus, Andreolepis, Psarolepis and Guiyu) retained part of the primitive gnathostome pectoral girdle condition with spines and/or other dermal components. However, very little is known about the condition of the pelvic girdle in the earliest osteichthyans. Living osteichthyans, like chondrichthyans (cartilaginous fishes), have exclusively endoskeletal pelvic girdles, while dermal pelvic girdle components (plates and/or spines) have so far been found only in some extinct placoderms and acanthodians. Consequently, whether the pectoral and pelvic girdles are primitively similar in osteichthyans cannot be adequately evaluated, and phylogeny-based inferences regarding the primitive pelvic girdle condition in osteichthyans cannot be tested against available fossil evidence.

Methodology/Principal Findings

Here we report the first discovery of spine-bearing dermal pelvic girdles in early osteichthyans, based on a new articulated specimen of Guiyu oneiros from the Late Ludlow (Silurian) Kuanti Formation, Yunnan, as well as a re-examination of the previously described holotype. We also describe disarticulated pelvic girdles of Psarolepis romeri from the Lochkovian (Early Devonian) Xitun Formation, Yunnan, which resemble the previously reported pectoral girdles in having integrated dermal and endoskeletal components with polybasal fin articulation.

Conclusions/Significance

The new findings reveal hitherto unknown similarity in pectoral and pelvic girdles among early osteichthyans, and provide critical information for studying the evolution of pelvic girdles in osteichthyans and other gnathostomes.  相似文献   

3.

Background

Mineralized and permineralized bone is the most common form of fossilization in the vertebrate record. Preservation of gross soft tissues is extremely rare, but recent studies have suggested that primary soft tissues and biomolecules are more commonly preserved within preserved bones than had been presumed. Some of these claims have been challenged, with presentation of evidence suggesting that some of the structures are microbial artifacts, not primary soft tissues. The identification of biomolecules in fossil vertebrate extracts from a specimen of Brachylophosaurus canadensis has shown the interpretation of preserved organic remains as microbial biofilm to be highly unlikely. These discussions also propose a variety of potential mechanisms that would permit the preservation of soft-tissues in vertebrate fossils over geologic time.

Methodology/Principal Findings

This study experimentally examines the role of microbial biofilms in soft-tissue preservation in vertebrate fossils by quantitatively establishing the growth and morphology of biofilms on extant archosaur bone. These results are microscopically and morphologically compared with soft-tissue extracts from vertebrate fossils from the Hell Creek Formation of southeastern Montana (Latest Maastrichtian) in order to investigate the potential role of microbial biofilms on the preservation of fossil bone and bound organic matter in a variety of taphonomic settings. Based on these analyses, we highlight a mechanism whereby this bound organic matter may be preserved.

Conclusions/Significance

Results of the study indicate that the crystallization of microbial biofilms on decomposing organic matter within vertebrate bone in early taphonomic stages may contribute to the preservation of primary soft tissues deeper in the bone structure.  相似文献   

4.
Serial sectioning of a nodule encapsulating an adult specimen of the arthrodire placoderm Watsonosteus fletti from the Eday Flagstone Formation (Givetian) in the Orcadian Basin of northern Scotland has revealed the presence of a number of embryos within the adult. This specimen represents the oldest known record of fossilized vertebrate embryos. Thin sections of two of the slices have revealed the detailed histological structure of embryonic plates in placoderms, showing that as previously deduced from visual examination, the outer and inner layers were the first to form. Gut contents preserved near the embryos show that the species had a varied diet, with dermal bone fragments from sarcopterygians and placoderms.  相似文献   

5.
Theories on the origin of vertebrate teeth have long focused on chondrichthyans as reflecting a primitive condition—but this is better informed by the extinct placoderms, which constitute a sister clade or grade to the living gnathostomes. Here, we show that ‘supragnathal’ toothplates from the acanthothoracid placoderm Romundina stellina comprise multi-cuspid teeth, each composed of an enameloid cap and core of dentine. These were added sequentially, approximately circumferentially, about a pioneer tooth. Teeth are bound to a bony plate that grew with the addition of marginal teeth. Homologous toothplates in arthrodire placoderms exhibit a more ordered arrangement of teeth that lack enameloid, but their organization into a gnathal, bound by layers of cellular bone associated with the addition of each successional tooth, is the same. The presence of enameloid in the teeth of Romundina suggests that it has been lost in other placoderms. Its covariation in the teeth and dermal skeleton of placoderms suggests a lack of independence early in the evolution of jawed vertebrates. It also appears that the dentition—manifest as discrete gnathal ossifications—was developmentally discrete from the jaws during this formative episode of vertebrate evolution.  相似文献   

6.
The synarcual is a structure incorporating the anterior vertebrae of the axial skeleton and occurs in vertebrate taxa such as the fossil group Placodermi and the Chondrichthyes (Holocephali, Batoidea). Although the synarcual varies morphologically in these groups, it represents the first indication, phylogenetically, of a differentiation of the vertebral column into separate regions. Among the placoderms, the synarcual of Cowralepis mclachlani Ritchie, 2005 (Arthrodira) shows substantial changes during ontogeny to produce an elongate, spool-shaped structure with a well-developed dorsal keel. Because the placoderm synarcual is covered in perichondral bone, the ontogenetic history of this Cowralepis specimen is preserved as it developed anteroposteriorly, dorsally and ventrally. As well, in the placoderm Materpiscis attenboroughi Long et al., 2008 (Ptyctodontida), incomplete fusion at the posterior synarcual margin indicates that both neural and haemal arch vertebral elements are added to the synarcual. A survey of placoderm synarcuals shows that taxa such as Materpiscis and Cowralepis are particularly informative because perichondral ossification occurs prior to synarcual fusion such that individual vertebral elements can be identified. In other placoderm synarcuals (e.g. Nefudina qalibahensis Lelièvre et al., 1995; Rhenanida), cartilaginous vertebral elements fuse prior to perichondral ossification so that individual elements are more difficult to recognize. This ontogenetic development in placoderms can be compared to synarcual development in Recent chondrichthyans; the incorporation of neural and haemal elements is more similar to the holocephalans, but differs from the batoid chondrichthyans.  相似文献   

7.
The relationships of placoderm fishes   总被引:1,自引:0,他引:1  
  相似文献   

8.
Young GC 《Biology letters》2008,4(1):110-114
Exceptional braincase preservation in some Devonian placoderm fishes permits interpretation of muscles and cranial nerves controlling eye movement. Placoderms are the only jawed vertebrates with anterior/posterior obliques as in the jawless lamprey, but with the same function as the superior/inferior obliques of other gnathostomes. Evidence of up to seven extraocular muscles suggests that this may be the primitive number for jawed vertebrates. Two muscles innervated by cranial nerve 6 suggest homologies with lampreys and tetrapods. If the extra muscle acquired by gnathostomes was the internal rectus, Devonian fossils show that it had a similar insertion above and behind the eyestalk in both placoderms and basal osteichthyans.  相似文献   

9.
10.
It has been demonstrated recently that upper forelimbs of axolotls comprised of symmetrically arranged soft tissues do not regenerate (P. W. Tank, 1978,J. Exp. Zool.204, 325–336). These double-half forelimb stumps contained skin, muscle, and loose connective tissues in symmetrical arrangement. The present study explores the roles of muscle, skin, and epidermis in the regeneration of double-half forelimbs by grafting them separately to create forelimb stumps bearing symmetrical arrangements of these individual tissues. Forelimb stumps bearing symmetrically arranged flexor and extensor muscles and normally arranged skin underwent complete regeneration (96%). Forelimbs comprised of double-half skin overlying normally arranged muscles and deep tissues formed hypomorphic structures and nonregenerates (56%) with some single and multiple regenerates. Limbs with double-half deep tissues and complete epidermis either regenerated distally incomplete patterns (47%), single patterns (33%), or multiple patterns (20%). Those forelimbs comprised of double-half skin and no muscle regenerated incomplete patterns in the majority of cases (56%) but single and multiple limbs also were formed. Based on these results it can be concluded that no single type of tissue is solely responsible for the regenerative failure experienced by double-half forelimbs in the earlier study. The complete failure of forelimb regeneration occurs only when all types of soft tissues tested (skin, muscle, and deep connective tissues) are present in symmetrical arrangement.  相似文献   

11.
Chondrichthyan fishes have an evolutionary history spanning over 400 million years and are characterized, in part, by internal fertilization. Traditionally, oviparity has been assumed to be the primitive birthing mode for these fishes and for vertebrates in general, with viviparity and matrotrophic nutrition being derived. The fossilized remains of two specimens of Harpagofututor volsellorhinus from the Upper Mississippian of Montana now provide the first direct evidence of matrotrophic live birth in a Palaeozoic chondrichthyan and of superfoetation in an extinct fish. Each female exhibits multiple foetuses of two size groups, indicating simultaneous gestation of multiple litters. There is no evidence of yolk sacs, only preserved organic pigments enveloping the young, suggesting matrotrophically derived material. Young were born large, as head lengths of the largest embryos measured up to 66 per cent of the mother's head length. Comparison of in utero embryos to isolated specimens suggests, unlike all extant chondrichthyans, the absence of a juvenile stage and rapid maturity. These new data suggest the advantages of superfoetative viviparity for a small bodied fish in a 318 Myr old species‐ and predator‐rich marine bay. In the greater view of gnathostome evolution, this finding combines with other recent discoveries to document that multiple, and not necessarily closely related, species of both placoderms and chondrichthyans exhibited viviparity by the Upper Devonian and the Upper Mississippian. The capacity for internal fertilization probably predisposed members of these lineages to develop viviparity so early in gnathostome history. Yet, the surprising range of viviparity exhibited at this stage of vertebrate evolution emphasizes that derived reproductive strategies had evolved in gnathostomes by 380–318 million years ago. © 2011 The Linnean Society of London, Zoological Journal of the Linnean Society, 2011, 161 , 587–594.  相似文献   

12.
The Placodermi (armored jawed fishes), which appeared during the Lower Silurian and disappeared without leading any descendants at the end of the Famennian (Latest Devonian), have the highest diversity of known Devonian vertebrate groups. As phylogenetically basal gnathostomes (jawed vertebrates), they are potentially informative about primitive jawed vertebrate anatomy and origins. Until recently, the study of their internal or histological structures has required destructive methods such as sectioning or serial grinding. Recent advances in tomography and imaging technologies, especially through the increasing use of synchrotron phase contrast imaging for the study of fossils, allow us to reveal the inner structures of the fossil nondestructively and with unprecedented three-dimensional level of detail. Here, we present for the first time the prerostral anatomy of the small acanthothoracid Romundina stellina, one of the earliest and most basal placoderms. Phase contrast imaging allows us to reconstruct the vascularization and nerve canals of the premedian plate and adjacent parts of the skeleton three-dimensionally in great detail, providing important clues to the growth modes and biology of the animal.  相似文献   

13.
The Early Devonian of Podolia, Ukraine, has yielded phosphatized colonies of the boring ctenostome bryozoan Podoliapora doroshivi with 3‐D preservation of soft tissues. However, the feeding zooids are not anatomically complete, their preserved soft tissues comprising decay‐resistant structures such as the protective cuticular polypide sacs with presumed parietal muscles inside the wall of the sacs, the setigerous collars, the membranous orificial walls and remains of the muscle tissues. Early diagenetic apatite mineralization occured in numerous feeding zooids of Podoliapora at different stages of decay and may be important for the interpretation of decay processes in these colonial soft‐bodied fossil organisms. A setigerous collar, which is a characteristic of extant ctenostomes, occurs in P. doroshivi in several stages of decay showing progressive collapse and eventual complete loss. This study indicates that the morphological changes of collars induced by decay often resulted in connection with the membranous orificial wall, producing false anatomical structures, unrelated to structures observed in the earlier stages of decay or to the anatomical structures of extant ctenostomes. The most decay‐resistant cuticular polypide sacs mineralized as cryptocrystalline apatite in early stage of decay became degraded in later stages of decay. These data provide evidence that the anatomical interpretation of soft‐bodied fossils preserved only in the later stages of decay may have led to imprecise morphological interpretations.  相似文献   

14.
Since the discovery of exceptionally preserved theropod dinosaurs with soft tissues in China in the 1990s, there has been much debate about the nature of filamentous structures observed in some specimens. Sinosauropteryx was the first non‐avian theropod to be described with these structures, and remains one of the most studied examples. Despite a general consensus that the structures represent feathers or feather homologues, a few identify them as degraded collagen fibres derived from the skin. This latter view has been based on observations of low‐quality images of Sinosauropteryx, as well as the suggestion that because superficially similar structures are seen in Jurassic ichthyosaurs they cannot represent feathers. Here, we highlight issues with the evidence put forward in support of this view, showing that integumentary structures have been misinterpreted based on sedimentary features and preparation marks, and that these errors have led to incorrect conclusions being drawn about the existence of collagen in Sinosauropteryx and the ichthyosaur Stenopterygius. We find that there is no evidence to support the idea that the integumentary structures seen in the two taxa are collagen fibres, and confirm that the most parsimonious interpretation of fossilized structures that look like feather homologues in Sinosauropteryx is that they are indeed the remains of feather homologues.  相似文献   

15.
Psammosteiforms, including Tartuosteus (?) zheleznogorskensis, sp. nov. and Psammosteus cf. P. praecursor Obruchev, from the Lower Frasnian (Upper Devonian) of the Mikhailovskii Mine (Kursk Region) are described. Agnathans, placoderms, crossopterygians, and acanthodians from this locality are determined. The similarity of the Mikhailovskii Fish Assemblage to the assemblage of southern Timan suggests it be assigned to the Upper Timan Regional Stage.  相似文献   

16.
Exceptionally detailed soft tissues have been identified within the fossilized feces of a large Cretaceous tyrannosaurid. Microscopic cord-like structures in the coprolitic ground mass are visible in thin section and with scanning electron microscopy. The morphology, organization, and context of these structures indicate that they are the fossilized remains of undigested muscle tissue. This unusual discovery indicates specific digestive and taphonomic conditions, including a relatively short gut-residence time, rapid lithification, and minimal diagenetic recrystallization. Rapid burial of the feces probably was facilitated by a flood event on the ancient coastal lowland plain on which the fecal mass was deposited.  相似文献   

17.
Myotonic dystrophy type 2 (DM2) is a dominantly inherited disorder caused by a CCTG repeat expansion in intron 1 of ZNF9 gene. The size and the somatic instability of DM2 expansion complicate the molecular diagnosis of DM2. In situ hybridization represents a rapid and sensitive method to obtain a definitive diagnosis in few hours, since it allows the direct visualization of the mutant mRNA foci on skeletal muscle sections. This approach makes the muscle biopsy an important tool for definitive diagnosis of DM2. Consequently, a rapid freezing at ultra cold temperature and a good storage of muscle specimens are essential to avoid morphologic alterations and nucleic acids degradation. However incorrect freezing or thawing may accidentally occur. In this work we report that fluorescence in situ hybridization may be applied on improperly frozen or inappropriately stored muscle biopsies since foci of mutant mRNA are well preserved and can still be detected in muscle sections no more useful for histopathological evaluation.Key words: myotonic dystrophy type 2, defrozen muscle biopsy, fluorescence, in situ hybridization, ribonuclear inclusions.Myotonic dystrophy type 2 (DM2) is a neuromuscular disorder due to the unstable (CCTG)n repeat expansion in intron 1 of the zinc finger protein 9 (ZNF9) gene on chromosome 3q21.3 (Liquori et al. 2001). Mutant ZNF9 pre-mRNA is spliced and polyadenylated, and the mRNA is exported to the cytoplasm where normal levels of ZNF9 protein expression occur (Botta et al., 2006; Margolis et al. 2006); however, the expanded repeats remain in cell nuclei as ribonuclear inclusions (Liquori et al. 2001). The DM2 ribonuclear inclusions contain only the CCUG repeat sequence derived from intron 1 but with no detectable flanking intronic RNA (Margolis et al. 2006). CCUG-containing mutant mRNAs form double-stranded hairpin loop structures that bind specific RNA-binding proteins such as muscle-blind-like proteins (MBNLs) that colocalize with ribonuclear inclusions in myonuclei (Mankodi et al., 2001; Fardaei et al., 2002). Sequestration of these proteins which are regulators of alternative splicing, alters the splicing of several pre-mRNA (reviewed by Osborne and Thornton, 2006) such as the insulin receptor (IR) and the chloride channel (ClC1) (Savkur et al., 2004; Charlet et al., 2002; Mankodi et al., 2002). Alterations in IR splicing leads to insulin insensitivity and predisposition to diabetes (Savkur et al. 2004) and alterations in ClC1 splicing results in electrical myotonia (Charlet et al., 2002; Mankodi et al., 2002). Conventional Southern blot analysis is not adequate for a definitive molecular diagnosis in DM2 due to the extremely large size and somatic instability of the expansion mutation (Liquori et al., 2001; Bachinski et al., 2003). The extraordinary somatic instability complicates the analysis of genotype-phenotype correlations including those in the effect of the gender of transmitting parents and anticipation. The copy number of DM2 CCTG is below 30 in phenotypically normal individuals and up 11.000 in patients (Day and Ranum, 2005). A complex genotyping diagnostic procedure is now commonly used consisting of a three-step molecular protocol (Day et al., 2003; Udd et al., 2003). However, a more practical tool to obtain a definitive diagnosis in few hours is represented by in situ hybridization which detects ribonuclear inclusions in cell nuclei of muscle fibers (Cardani et al., 2004; Sallinen et al., 2004). This approach makes muscle biopsy an essential tool for DM2 diagnosis. For this reason muscle specimens should be sent fresh, for rapid freezing, from the operating room to the pathology laboratory.To avoid RNA degradation, biopsies require special precautions with handling of material, such as immediate freezing of fresh tissues, because retrospective genetic analysis is impaired by conventional tissue processing techniques. However, many small hospitals are ill-equipped for snap freezing which requires access to liquid nitrogen or dry ice; thus, frequently outside hospitals provide specimens that are obscured with freeze artefacts because they either were submitted incorrectly or were improperly frozen, at the point of origin prior to shipment. Moreover, an accidental tissue thawing and refreezing may occur (for example power failure of the freezer) causing severe tissue damages and possible RNA degradation.Here we report our experience on DM2 muscle biopsies improperly preserved: these were no more useful for a histopathological analysis since they showed evident morphologic artefacts, but they proved to be still suitable for diagnosis by fluorescence in situ hybridization (FISH) since ribonuclear inclusions were preserved and still detectable on muscle sections.  相似文献   

18.
HEADS AND TAILS: A CHORDATE PHYLOGENY   总被引:10,自引:0,他引:10  
Abstract— A cladistic analysis of chordates is presented, based on some 320 nested characters. All the principal higher taxa are defined by synapomorphies, including extinct acanthodians and placoderms. The data base draws broadly from adult anatomy (including osteological data for Recent and fossil taxa), embryology, physiology, and biochemistry. A conventional sequence of chordate higher taxa is generated (hemichordates, urochordates, cephalochordates, craniates). Among the craniates, cyclostomes are considered paraphyletic. Gnathostomes are monophyletic, but two fossil "agnathan" groups (galeaspids, osteostracans) are regarded as stem gnathostomes. Chondrichthyans and osteichthyans are monophyletic. New arguments for osteichthyan affinity of acanthodians are presented. The phylogenetic position of placoderms is still problematic, but they can no longer be perceived as stem chondrichthyans or even as "elasmobranchiomorphs." Recent dipnoans and tetrapods are sister groups, but new paleontological discoveries refute many of their supposed osteological synapomorphies, thereby reopening the possibility of a closer relationship between tetrapods and osteolepiform rhipidistians.  相似文献   

19.
In the Lower Plattenkalk of Bergisch Gladbach occur, besides the well known?Hians”-beds, polymictic accumulations of shell material. Together with the valves ofMartinia inflata (Schnur),Uncinulus parallelepipedus (Br.) andIsopoma brachyptyctum (Schnur) are great numbers ofSpinatrypa tubaecostata (Paeck.) andAtrypa prisca gladbachensis n. subsp. In spite of the fact that the host rock was deposited as shell debris, in particular the rhynchonellids and atrypids are easily separated from it in a well preserved state. Atrypa (Desquamatia) prisca gladbachensis n. subsp. is commonly found with its alations intact. This subspecies, which is here described in some detail, fluorisched on a marly ooze bottom. The expanded valves increased the food gathering field, while the alations, surrounding the shell margin almost like a flange, functioned as effective particle filters. Because of this, the free valves floated under wave attack and became fossilized almost undamaged. The brachiopod shells and the organoplastic debris were washed on to discontinuity surfaces which probably had already been lithified by algal growth.  相似文献   

20.
Three recent genera are included in the supertribe Stomatosematidi: Stomatosema (16 species), Vanchidiplosis (4 species), and Didactylomyia (3 species). Seven species of the genus Stomatosema and two species of the genus Vanchidiplosis occur in the Palaearctic Region. No reliable findings of representatives of the supertribe were known in fossilized condition. One new genus and 3 new species are described from amber of the Late Eocene age (Rovno Region): Stomatosema iljieteugeniae sp. n., Clarumreddera korneyevi gen. n. et sp. n., and C. conceptiva sp. n.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号