首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
A method for fast plant regeneration via organogenesis directly from Lycium barbarumleaf explants has been developed. The key factor for shoot regeneration was the presence of benzyladenine (BA) in the medium. NAA could only induce root formation and explant callusing. Murashige and Skoog (MS) medium supplemented with 2 mg/l BA and 0.5 mg/l NAA is the most efficient condition for shoot formation, with up to 92.6% shoot regeneration and no callus formation. All adventitious shoots cultured on MS medium supplemented with 1 mg/l IAA formed an extensive root system. Regenerated plants were morphologically normal and were also proved to be diploid (2n = 24). Using the optimized regeneration system, the genetic transformation of L. barbarumwas carried out mediated by Agrobacterium tumefaciensEHA101(pIG121Hm). 11.8% leaf explants produced kanamycin-resistant shoots after infection by A. tumefaciens.The putative transgenic nature of plants was confirmed by GUS assay and PCR analysis. Expression of the nptIIgene in the regenerated plants was also detected by observing the callus formation by leaf pieces on MS medium containing 0.2 mg/l 2,4-D and 0–100 mg/l kanamycin.  相似文献   

2.
A successful Agrobacterium-mediated transformation system involving a disarmed Ti plasmid is composed of two stages: transformation of cells and recovery of transformed plants. A tissue transformation system with 34% efficiency was developed using stem segments of the interspecific tomato hybrid Lycopersicon esculentum × L. pennellii. This transformation system emphasizes three factors favoring the recovery of transformed plants: 1) promotion of cell division activity at the inoculation site with kinetin in the incubation medium, 2) promotion of adventitious bud initiation by using organized tissue explants in culture, and 3) application of selection at the shoot development stage of adventitious regeneration.Abbreviations MSO Murashige and Skoog (1962) salt medium supplemented with B5 (Gamborg et al. 1968) vitamins, 2.5% sucrose and 0.8% agar - MSc MS0+1.0 mg/l 1-naphthaleneacetic acid and 0.5 mg/l kinetin - MSs1 MS0+1.0 mg/l kinetin - MSs2 MS0+2.0 mg/l kinetin - kn kanamycin sulfate (Sigma) at 100 mg/l - cb carbenicillin (Sigma) at 250 mg/l - cf claforan (cefotaximine sodium, Hoechst-Roussel Pharmuceutical Inc.) at 250 mg/l  相似文献   

3.
An efficient method for adventitious shoot regeneration for Arabis drummondii and a transformation protocol for A. gunnisoniana from hypocotyl explants are described. Hypocotyl explants from 7-day-old aseptically grown seedlings were cultured on MS medium containing plant growth regulators (6-benzylaminopurine, 1-phelyl-3- (1,2,3-thiadiazol-5-yl) urea, -naphthaleneacetic acid and 2,4-dichlorophenoxy-acetic acid). After 4 weeks in culture, high frequency of adventitious shoot regeneration was observed. Regenerated shoots were rooted on half-strength MS basal medium supplemented 1% (w/v) sucrose, with or without NAA. This protocol was then used to produce transformed Arabis gunnisoniana plants. A. gunnisoniana hypocotyl explants were co-cultivated with Agrobacterium tumefaciens strain GV3101 harbouring pBJ40. Transgenic shoots were selected on MS 21 medium supplemented with 50 mg l kanamycin. PCR analysis verified the presence of the nptII gene in the plant DNA isolated from kanamycin resistant shoots.  相似文献   

4.
The effects of thidiazuron (TDZ) on adventitious bud and shoot formation from hypocotyl segments of sweetgum (Liquidambar styracifiua) were tested alone and in combination with 2,4-dichlorophenoxyacetic acid (2,4-D). The combination of 1 mg/1 TDZ with 0.01 mg/l 2,4-D resulted in the highest frequency of bud production. Lower concentrations of TDZ stimulated shoot production, generating the most shoots at 0.1 mg/1 TDZ with 0.01 mg/1 of 2,4-D. Inhibition of shoot elongation by TDZ was overcome by transferring shoot cultures to a shoot proliferation medium lacking TDZ or containing naphthaleneacetic acid and benzyladenine in addition to TDZ. Shoot production in liquid culture was significantly greater than that in solid culture. Comparisons of in vitro and ex vitro rooting of the adventitious shoots demonstrated that ex vitro rooting produced plants with faster growth rates and more extensive root systems.Abbreviations BA Benzyladenine - IBA indole-3-butyric acid - NAA naphthaleneacetic acid - PGR plant growth regulator - TDZ thidiazuron - 2,4-D 2,4-dichlorophenoxyacetic acid  相似文献   

5.
Summary Horseradish (Armoracia rusticana) hairy root clones were established from hairy roots which were transformed with the Ri plasmid in Agrobacterium rhizogenes 15834. The transformed plants, which were regenerated from hairy root clones, had thicker roots with extensive lateral branches and thicker stems, and grew faster compared with non-transformed horseradish plants. Small sections of leaves of the transformed plants generated adventitious roots in phytohormone-free G (modified Gamborg's) medium. Root proliferation was followed by adventitious shoot formation and plant regeneration. Approximately twenty plants were regenerated per square centimeter of leaf. The transformed plants were easily transferable from sterile conditions to soil. When leaf segments of the transformed plants were cultured in a liquid fertilizer under non-sterile conditions, adventitious roots were generated at the cut ends of the leaves. Adventitious shoots were generated at the boundary between the leaf and the adventitious roots and developed into complete plants. This novel life cycle arising from leaf segments is a unique property of the transformed plants derived from hairy root clones.  相似文献   

6.
Summary A protocol is described for the simple, rapid and efficient production of transgenic Arabidopsis plants. The procedure was developed using growth regulator regimes that promote adventitious embryogenesis during or immediately following Agrobacterium mediated transformation. Both the RLD and Columbia genotypes of Arabidopsis were transformed using slightly different growth regulator regimes. For the Columbia genotype two modifications of the protocol were identified which substantially improved regeneration. Cold treatment of the plants used as a source of root explants resulted in a three-fold increase in the number of morphogenic sectors produced. A more important modification was the inclusion of 25 mg/l silver nitrate (an inhibitor of ethylene action) to the medium used for shoot regeneration. This provided a ten-fold increase in the number of shoots produced. These procedures made it possible to obtain over 100 putative transformants of RLD or Columbia from a single 10 cm petri dish, within 2 or 4 weeks after exposure of root explants to the bacteria. When these were transferred to rooting media containing antibiotics, approximately 20% were able to root after kanamycin selection and 80% after hygromycin selection. All the rooted plantlets tested were shown to contain integrated donor DNA as determined by Southern blot analysis.  相似文献   

7.
A successful, efficient system for multiple soybean shoot induction of soybean [Glycine max (L.) Merr.] is reported. Multiple shoots were induced from cotyledonary nodes and hypocotyl segments cultured on media supplemented with 2 mg/l thidiazuron (TDZ) or 1.15 mg/l benzyladenine (BA). It was found that TDZ induced adventitious shoots more efficiently than BA and that hypocotyl segments promoted more adventitious shoots than cotyledonary nodes. The optimal TDZ concentrations for shoot organogenesis from hypocotyl segments were between 1 and 2 mg/l. Basal media also influenced the efficiency of shoot organogenesis. The frequency of adventitious shoot formation tended to increase when the salt concentration in the basal media supplemented with 2 mg/l TDZ was reduced. Two media (1/2B5 and 1/2L2) stimulated shoot organogenesis efficiently from hypocotyl segments. This method can thus be advantageously applied in the production of transgenic soybean plants. Received: 3 July 1996 / Accepted: 9 May 1997  相似文献   

8.
Cotton (Gossypium hirsutum L.) was transformed by the EHA101 strain of Agrobacterium tumefaciens harboring a binary vector pGA482GG plasmid carrying the marker genes for neomycin phosphotransferase II (nptII) determining resistance to kanamycin and β-glucuronidase (GUS). The cotyledons, hypocotyls, shoot meristem tissue, and its segments taken from in vitro growing seedlings were used as explants. Explants were cultured in a Murashige and Skoog (MS) medium containing various hormone combinations to induce shoot regeneration. The highest frequency of shoot formation was obtained from the shoot meristem. After selection in the MS medium containing kanamycin (50 mg/l), these tissues were tested by histochemical GUS assay. Shoots regenerated from excised shoot meristems or their halves were cultured for 4–6 weeks to obtain rooted plants, which then produced fully-developed plants and seeds in pots. Genomic integration of the kanamycin-resistance gene was detected by the PCR analysis. Seed germination percentage was 95% after the F1 seeds of transgenic cotton plants were cultured on half-strength MS medium supplemented with 50 mg/l kanamycin. Thus, a protocol for effective Agrobacterium-mediated genetic transformation of cotton was optimized. Published in Russian in Fiziologiya Rastenii, 2006, Vol. 53, No. 3, pp. 462–467. The text was submitted by the authors in English.  相似文献   

9.
The effects of antibiotics commonly used in Agrobacterium-mediated transformation were studied on Pinus pinaster tissues. Embryogenic tissue growth from three embryogenic lines and adventitious bud induction from cotyledons from three open-pollinated seed families were analysed. Cefotaxizme, carbenicillin and timentin commonly used for Agrobacterium elimination, at concentrations of 200–400 mg l −1 did not inhibit the embryogenic tissue growth on filter paper nor as clumps. Adventitious bud induction and bud number were significantly reduced for one of the tested families when using 400 mg l−1 cefotaxime or timentin. The selection agent kanamycin significantly inhibited growth of embryogenic tissue on filter paper in all the embryogenic lines␣and concentrations tested (20–50 mg l−1). Kanamycin also inhibited growth of embryogenic clumps after two subcultures at 5–50 mg l−1. In␣cotyledons, kanamycin inhibited adventitious bud␣formation in the three seed families used, regardless of the concentrations tested (5–25 mg l−1). There was a significant effect of the seed family on the bud induction and the number of adventitious buds produced. From the results obtained, we propose the use of timentin to eliminate Agrobacterium in transformation experiments, at concentrations of 400 mg l−1 for embryogenic tissues and of 300 mg l−1 for cotyledons. For selection of transformed tissues carrying the kanamycin resistance gene, kanamycin should be used at 20 mg l−1 for embryogenic tissues on filter paper, at 5 mg l−1 when clumps are in direct contact with the selection medium, and bellow 5 mg l−1 for adventitious bud induction.  相似文献   

10.
Pan LP  Yu SL  Chen CJ  Li H  Wu YL  Li HH 《Plant cell reports》2012,31(1):121-131
A resveratrol synthase gene was cloned from the peanut plant (Arachis hypogaea) by RT-PCR and was transformed into purple sweet potato (Ipomoea batatas) by Agrobacterium-mediated transformation. Stem sections were infected with bacterial solution of OD600 = 0.4 for 20 min and then cocultured for 2 days. Infected explants were cultured on MS media containing 50 mg/l kanamycin, 0.02 mg/l NAA and 1 mg/l 6-BA for bud induction or containing 75 mg/l kanamycin, 1.0 mg/l NAA and 0.1 mg/l 6-BA for root formation. The bud and root induction rates were 37.5 and 25.0%, respectively. 105 regenerated plants were obtained, with 11 positive plants by PCR and Southern blotting analyses. A high level of resveratrol glucoside (340 μg/g dry weight), but no resveratrol, was detected in the transformed plants by HPLC. This study also provides a stable genetic transformation and plant regeneration method for metabolic modification of purple sweet potato.  相似文献   

11.
Adventitious rooting in Rumex plants, in which the root systems were in hypoxic conditions, differed considerably between two species. R. palustris, a species from frequently flooded river forelands, developed a large number of adventitious roots during hypoxia, whereas adventitious root formation was poor in R. thyrsiflorus, a species from seldom flooded dykes and river dunes. Adventitious rooting could also be evoked in aerated plants of both species by application of auxin (1-naphthaleneacetic acid or indoleacetic acid) to the leaves. The response to auxin was dose-dependent, but even high auxin doses could not stimulate R. thyrsiflorus to produce as many adventitious roots as R. palustris. Consequently, the difference between the species in the amount of adventitious root formation was probably genetically determined, and not a result of a different response to auxin. A prerequisite for hypoxia-induced adventitious root formation is the basipetal transport of auxin within the shoot, as specific inhibition of this transport by N-1-naphthylphthalamic acid severely decreased the number of roots in hypoxia-treated plants. It is suggested that hypoxia of the root system causes stagnation of auxin transport in the root system. This can lead to an accumulation of auxin at the base of the shoot rosette, resulting in adventitious root formation.  相似文献   

12.
Summary Leaf discs of C. intybus were inoculated with an Agrobacterium tumefaciens strain harboring a neomycin phosphotransferase (neo) gene for kanamycin resistance and a mutant acetolactate synthase gene (csr1-1) from Arabidopsis thaliana conferring resistance to sulfonylurea herbicides. A regeneration medium was optimized which permitted an efficient shoot regeneration from leaf discs. Transgenic shoots were selected on rooting medium containing 100 mg/l kanamycin sulfate. Integration of the csr1-1 gene into genomic DNA of kanamycin resistant chicory plants was confirmed by Southern blot hybridizations. Analysis of the selfed progenies (S1 and S2) of two independent transformed clones showed that kanamycin and chlorsulfuron resistances were inherited as dominant Mendelian traits. The method described here for producing transformed plants will allow new opportunities for chicory breeding.  相似文献   

13.
Summary A transformation system that allows regeneration of transgenic pea plants from calli selected for antibiotic resistance was developed. Explants from axenic shoot cultures and seedling epicotyls were cocultivated with nononcogenic Agrobacterium tumefaciens strains, and transformed callus could be selected on callus-inducing media containing either 15 mg/l hygromycin or 75 mg/l kanamycin. After several passages on regeneration medium, shoot organogenesis could be reproducibly induced on hygromycin-resistant calli, but not on the calli selected for kanamycin resistance. Regenerated shoots could subsequently be rooted and transferred into the greenhouse. In addition, the effects of different callus-inducing and growth media on organogenesis were investigated. The transformation of the calli and regenerated plants was confirmed by DNA analysis.  相似文献   

14.
The effect of five antibiotics: carbenicillin, chloramphenicol, cefotaxime, kanamycin and hygromycin on the organogenesis from callus cultures of Coryphantha elphantidens (Lem.) Lem. have been studied. Carbenicillin and cefotaxime stimulated shoot regeneration from callus. All antibiotics under study suppressed rooting of in vitro formed shoots. After five sequential subcultures on kanamycin supplemented medium, antibiotic resistant callus was obtained. To study the impact of kanamycin on resistant callus, total protein content was also studied. Selected callus showed a remarkable increase in callus mass. Antibiotic resistant plants have been selected by screening callus pieces on kanamycin supplemented media. Total protein content increased with subsequent subcultures in kanamycin resistant callus. The kanamycin selected shoots withstood the stability test after 2 months on antibiotic free medium. Plants were raised from the callus, which formed roots in 20 mg dm–3 kanamycin, which was under study.  相似文献   

15.
Several factors that affect in vitro establishment, proliferation, and rooting of thirteen Malus cultivars and rootstocks were studied. Apple shoot tips (1.5±0.5 cm in length) were established using ascorbic and citric acids as antioxidants. Four proliferation media containing 1.0 mg 1–1 BA and different concentrations of IBA and GA3 were tested. Proliferation rates varied depending on the genotype and medium used. The highest proliferation rate was obtained for a rootstock that produced 11.6±2.5 shoots (1.5±0.8 cm in length) per tube per month. Rooting was induced with IBA for all the genotypes tested. The optimal IBA concentration was cultivar dependent (between 0.1 and 1.0 mg 1–1 IBA), and lower concentrations were necessary to induce rooting in liquid rather than in solid medium.The effects on shoot-tip proliferation of cefotaxime, carbenicillin and kanamycin, three antibiotics commonly used for transformation studies, were also evaluated. Cefotaxime at 200 mg 1–1 stimulated shoot growth and development, but at 500 mg 1–1 caused abnormal shoot morphology. Carbenicillin at 500 mg 1–1, alone or in combination with cefotaxime at 200 mg 1–1, inhibited proliferation and caused excessive enlargement of the basal leaves, inducing callus formation and release of phenolic compounds in the medium. Kanamycin at 50 mg 1–1 was phytotoxic and caused shoot chlorosis and necrosis. Consideration of the toxicity of these antibiotics is critical when designing transformation schemes for selection and recovery of transgenic apple plants.Abbreviations BA benzyladenine - cef cefotaxime - crb carbenicillin - GA3 gibberellic acid - IBA indole-3-butyric acid - Kan kanamycin - ms Murashige and Skoog [19] macro- and micro-nutrients - NAA naphthalene-acetic acid  相似文献   

16.
A simple and efficient procedure was developed for in vitro propagation of Solanum aculeatissimum Jacq. using leaf and petiole explants cultured on Murashige and Skoog (MS) medium supplemented with α-naphthalene acetic acid (NAA) and 6-benzyladenine (BA). Effects of various plant growth regulators, explant types, carbohydrates, and basal salts on induction of adventitious shoots were also studied. Leaf explants appeared to have better regeneration capacity than petiole explants in the tested media. The highest regeneration frequency (79.33 ± 3.60%) and shoot number (11.33 ± 2.21 shoots per explant) were obtained in leaf explants in MS medium containing 3% sucrose and 0.8% agar, supplemented with 0.1 mg/l NAA and 2.0 mg/l BA, whereas petiole explants were more responsive to 0.1 mg/l NAA and 1.0 mg/l thiadiazuron. Developed shoots rooted best on MS medium with 1.0 mg/l indole acetic acid (IAA), producing 18.33 ± 2.51 roots per shoot. Histological investigation showed that the shoot buds originated mainly from epidermal cells of wounded tissues, without callus formation. The regenerated plantlets were successfully acclimatized in a greenhouse, where over 90% developed into morphologically normal and fertile plants. Results of flow cytometry analysis on S. aculeatissimum indicated no variation in the ploidy levels of plants regenerated via direct shoot formation and showed almost the same phenotype as that of mother plants. This adventitious shoot regeneration method may be used for large-scale shoot propagation and genetic engineering studies of S. aculeatissimum.  相似文献   

17.
 Substantial improvement in peppermint (Mentha x piperita L. var. Black Mitcham) genetic transformation has been achieved so that the frequency of transgenic plants regenerated (percent of leaf explants that produced transformed plants) was 20-fold greater than with the original protocol. Essential modifications were made to conditions for Agrobacterium tumefaciens co-cultivation that enhanced infection, and for selection of transformed cells and propagules during regeneration. A systematic evaluation of co-cultivation parameters established that deletion of coconut water from the co-cultivation medium resulted in substantially increased transient β-Glucuronidase (GUS) activity, in both the frequency of explants expressing gusA and the number of GUS foci per explant (>700 explants). Co-cultivation on a tobacco cell feeder layer also enhanced A. tumefaciens infection. Enhanced transformation efficiencies were further facilitated by increased selection pressure mediated by higher concentrations of kanamycin in the medium during shoot induction, regeneration, and rooting: from 20 to 50 mg/l in shoot induction/regeneration medium and from 15 to 30 mg/l in rooting medium. Raising the concentration of kanamycin in media substantially lowered the number of "escapes" without significant reduction in plant regeneration. These modifications to the protocol yielded an average transformation frequency of about 20% (>2000 explants) based on expression of GUS activity or the tobacco antifungal protein, osmotin, in transgenic plants. Genetic transformation of peppermint has been enhanced to the extent that biotechnology is a viable alternative to plant breeding and clonal selection for improvement of this crop. Received: 7 December 1998 / Revision received: 27 April 1999 / Accepted: 14 May 1999  相似文献   

18.
Three genotypes of chickpea ICCV-1, ICCV-6 and a Desi (local) variety were tested for plant regeneration through multiple shoot production. The embryo axis was removed from mature seeds, the root meristem and the shoot apex were discarded. These explants were cultured on medium containing MS macro salts, 4X MS micro salts, I35 vitamins, 3.0 mg/1 BAP, 0.004 mg/1 NAA, 3% (w/v) sucrose and incubated at 260C. The explants were transformed withAgrobacterium tumefaciens strain LBA4404 with binary vector pBI121 containing theuidA andnptIl genes. Multiple shoots were repeatedly selected with kanamycin. The selected kanamycin resistant shoots were rooted on MS medium supplemented with 0.05 mg/1 113A. The presumptive transformants histochemically stained positive for GUS. Additionally, nptll assay confirmed the expression ofnptII in kanamycin resistant plants. Transgenic plants were transferred to soil and grown in the green house.Abbreviations BAP 6-benzylamino purine - 2,4-D 2,4dichlorophenoxy acetic acid - IAA Indole acetic acid - IBA Indole butaric acid - NAA Naphthalene acetic acid  相似文献   

19.
The effect of phytohormones on plant regeneration in callus culture of Iris ensata Thunb. was studied. 2,4-Dichlorophenoxyacetic acid (2,4-D) proved to be the most suitable auxin for the induction and subculturing of morphogenic callus. Organogenic calluses were induced from isolated embryos at the waxphase in MS medium supplemented with 2,4-D (1.0–2.0 mg/l) and kinetin (0.2–0.5 mg/l). Changes in the medium hormonal composition favor the development of adventitious structures. The setting of adventitious shoot buds took place in the presence of 6-benzylaminopurine, while the development of shoots and root primordia was observed after 2,4-D replacement with indoleacetic acid (2.0 mg/l). The root initiation in regenerating plants required a hormone-free medium. The development of intact seedling and regenerated plants of I. ensata were studied. Analysis of the shoot structure demonstrated that in vitro cultured plants are at the juvenile stage.  相似文献   

20.
Transgenic plants of the rootstock Rosa hybrida L. cv. Moneyway were produced via a two-step procedure. First, kanamycin-resistant roots were generated on stem slices from micropropagated shoots, which were cocultivated with Agrobacterium tumefaciens containing the neomycin phosphotransferase II (NPTII) gene for conferring kanamycin resistance, together with individual ROL genes from A. rhizogenes. Root formation was quite efficient and up to two kanamycin-resistant roots per stem slice were produced. In the second step, these roots were used to regenerate transgenic plants via somatic embryogenesis. Although regeneration lasted up to 12 months, production of several transformants was successfully accomplished. Untransformed escapes were not found, indicating that the initial selection on kanamycin resistance was reliable.The presence of a combination of ROLA, B and C genes enhanced adventitious root formation on micropropagated shoots and explants of stems and leaves. It appears that the auxin sensitivity was increased to such a degree that cells were able to respond even to endogenous auxins present in shoots and leaves. Rooting experiments in greenhouse demonstrated that adventitious root formation on cuttings was improved threefold upon introduction of these ROL genes. It is concluded that a method was developed for the production of ROL gene transformed roses with improved rooting characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号