首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When a compressive impact load is applied on the chest, as in automobile crash or bomb explosion, the lung may be injured and show evidences of edema and hemorrhage. Since soft tissues have good strength in compression, why does a compression wave cause edema? Our hypothesis is that tensile and shear stresses are induced in the alveolar wall on rebound from compression, and that the maximum principal stress (tensile) may exceed critical values for increased permeability of the epithelium to small solutes, or even fracture. Furthermore, small airways may collapse and trap gas in alveoli at a critical strain, causing traumatic atelectasis. The collapsed airways reopen at a higher strain after the wave passes, during which the expansion of the trapped gas will induce additional tension in the alveolar wall. To test this hypothesis, we made three new experiments: (1), measuring the effect of transient overstretch of the alveolar membrane on the rate of lung weight increase; (2) determining the critical pressure for reopening collapsed airways of rabbit lung subjected to cyclic compression and expansion; (3) cyclic compression of lung with trachea closed. We found that in isolated rabbit lung overstretching increases the rate of edema fluid formation, that the critical strain for airway reopening is higher than that for closing, and that these critical strains are strain-rate dependent, but independent of the state of the trachea, whether it is open or closed. Furthermore, a theoretical analysis is presented to show that the maximum principal (tensile) stress is of the same order of magnitude as the maximum initial compressive stress at certain localities of the lung.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Airway collapse and reopening due to mechanical ventilation exerts mechanical stress on airway walls and injures surfactant-compromised lungs. The reopening of a collapsed airway was modeled experimentally and computationally by the progression of a semi-infinite bubble in a narrow fluid-occluded channel. The extent of injury caused by bubble progression to pulmonary epithelial cells lining the channel was evaluated. Counterintuitively, cell damage increased with decreasing opening velocity. The presence of pulmonary surfactant, Infasurf, completely abated the injury. These results support the hypotheses that mechanical stresses associated with airway reopening injure pulmonary epithelial cells and that pulmonary surfactant protects the epithelium from this injury. Computational simulations identified the magnitudes of components of the stress cycle associated with airway reopening (shear stress, pressure, shear stress gradient, or pressure gradient) that may be injurious to the epithelial cells. By comparing these magnitudes to the observed damage, we conclude that the steep pressure gradient near the bubble front was the most likely cause of the observed cellular damage.  相似文献   

3.
Inhomogeneously compliant lungs need special treatment during ventilation as they are often affected by respiratory insufficiency which is frequently caused by a regional collapse of the airways. To treat respiratory insufficiency atelectatic areas have to be recruited. Beside conventional mechanical ventilation, high-frequency oscillatory ventilation (HFOV) is an efficient method for airway reopening. Using a transparent in-vitro model of the human lung the influence of varying frequencies on the reopening behavior of atelectatic regions is investigated for volume controlled ventilation. The experiments show that higher ventilation frequencies at constant tidal volume enhance the probability of successful reopening of collapsed lung regions and thus, lead to a more homogeneous distribution of air within the lung. This effect can be attributed (i) to larger flow velocities and thus larger pressure losses in the free pathways as the ventilation frequency increases and (ii) to higher inertia effects. In consequence, the static pressure in the branches above the atelectatic regions increases until it reaches a level at which recruitment is achieved.  相似文献   

4.
This work focuses on the development of a surrogate lung material (SLM) that reproduces the dynamic response of a human lung under various loading conditions and also allows for the analysis of the extent and distribution of damage. The SLM consists of polyurethane foam used to mimic the spongy lung tissue and fluid-filled gelatine microcapsules used to simulate the damage of alveoli.The bursting pressure of the microcapsules was investigated by conducting low and high rate compression tests on single microcapsules. A bursting pressure of around 5 bar was measured which is comparable to the reported lung overpressure at injury level.Low and high rate compression tests were conducted on the SLMs. From the measured mechanical properties and mass density, the stress wave speed was calculated and found to be well in the range of the reported values for human lungs (16–70 m/s).In order to study the extent and distribution of damage in the SLMs, as represented by burst microcapsules, a CT scan analysis was carried out before and after the impacts. The CT scan results clearly demonstrated the magnitude and distribution of damage within the specimen. The results are then compared to the Bowen curves, the most often used criteria for predicting blast injuries in humans. An excellent agreement was found between the observed damage in the surrogate lungs and the expected damage in real human lungs.In general, the SLM showed similar stress wave speed, bursting pressure and damage to that of the real lungs.  相似文献   

5.
下呼吸道重开的生物流体力学研究:实验模拟   总被引:1,自引:0,他引:1  
实验模拟了受阻塞肺下呼吸道重开的生物力学问题。呼吸是玻璃直圆管,以具有生物流体性质的机油作为阻塞液。实验给同了在压强差作用下阻塞液柱前陈面以及主粘液柱气泡前阵面的位置和速度曲线。结果表明,它们受外加压强,管直径,阻塞液以及初始阻塞液长度的影响。较高的外加中、阻塞液粘度较你攻管径较粗有利于呼吸道的重开。  相似文献   

6.
Adequate pulmonary function at birth depends upon a mature surfactant system and lungs of normal size. Surfactant is controlled primarily by hormonal factors, especially from the hypophysis, adrenal, and thyroid; but these have little influence on fetal lung growth. In contrast, current data indicate that lung growth is determined by the following physical factors that permit the lungs to express their inherent growth potential. (a) Adequate intrathoracic space: lesions that decrease intrathoracic space impede lung growth, apparently by physical compression. (b) Adequate amount of amniotic fluid: oligohydramnios retards lung growth, possibly by lung compression or by affecting fetal breathing movements or the volume of fluid within the potential airways and airspaces. (c) Fetal breathing movements of normal incidence and amplitude: fetal breathing movements stimulate lung growth, possibly by stretching the pulmonary tissue, and do not affect mean pulmonary blood flow but do induce small changes in phasic flow; these changes are probably too slight to influence lung growth. (d) Normal balance of volumes and pressures within the potential airways and airspaces: in the fetus, tracheal pressure greater than amniotic pressure greater than pleural pressure. This differential produces a distending pressure which may promote lung growth. Disturbing the normal pressure relationships alters the volume of fluid in the lungs and distorts lung growth, which is stimulated by distending the lungs and is impeded by decreasing lung fluid volume. The mechanisms by which these factors affect lung growth remain to be defined. Fetal lung growth also depends on at least a small amount of blood flow through the pulmonary arteries.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Throughout life, most mammals breathe between maximal and minimal lung volumes determined by respiratory mechanics and muscle strength. In contrast, competitive breath-hold divers exceed these limits when they employ glossopharyngeal insufflation (GI) before a dive to increase lung gas volume (providing additional oxygen and intrapulmonary gas to prevent dangerous chest compression at depths recently greater than 100 m) and glossopharyngeal exsufflation (GE) during descent to draw air from compressed lungs into the pharynx for middle ear pressure equalization. To explore the mechanical effects of these maneuvers on the respiratory system, we measured lung volumes by helium dilution with spirometry and computed tomography and estimated transpulmonary pressures using an esophageal balloon after GI and GE in four competitive breath-hold divers. Maximal lung volume was increased after GI by 0.13-2.84 liters, resulting in volumes 1.5-7.9 SD above predicted values. The amount of gas in the lungs after GI increased by 0.59-4.16 liters, largely due to elevated intrapulmonary pressures of 52-109 cmH(2)O. The transpulmonary pressures increased after GI to values ranging from 43 to 80 cmH(2)O, 1.6-2.9 times the expected values at total lung capacity. After GE, lung volumes were reduced by 0.09-0.44 liters, and the corresponding transpulmonary pressures decreased to -15 to -31 cmH(2)O, suggesting closure of intrapulmonary airways. We conclude that the lungs of some healthy individuals are able to withstand repeated inflation to transpulmonary pressures far greater than those to which they would normally be exposed.  相似文献   

8.
Static (Cstat) and dynamic (Cdyn) lung compliance and lung stress relaxation were examined in isolated lungs of newborn kittens and adult cats. Cstat was determined by increasing volume in increments and recording the corresponding change in pressure; Cdyn was calculated as the ratio of the changes in volume to transpulmonary pressure between points of zero flow at ventilation frequencies between 10 and 110 cycles/min. Lung volume history, end-inflation volume, and end-deflation pressure were maintained constant. At the lowest frequency of ventilation, Cdyn was less than Cstat, the difference being greater in newborns. Between 20 and 100 cycles/min, Cdyn of the newborn lung remained constant, whereas Cdyn of the adult lung decreased after 60 cycles/min. At all frequencies, the rate of stress relaxation, measured as the decay in transpulmonary pressure during maintained inflation, was greater in newborns than in adults. The frequency response of Cdyn in kittens, together with the relatively greater rate of stress relaxation, suggests that viscoelasticity contributes more to the dynamic stiffening of the lung in newborns than in adults. A theoretical treatment of the data based on a linear model of viscoelasticity supports this conclusion.  相似文献   

9.
Inhaled nanoparticles (NPs) are experienced by the first biological barrier inside the alveolus known as lung surfactant (LS), a surface tension reducing agent, consisting of phospholipids and proteins in the form of the monolayer at the air-water interface. The monolayer surface tension is continuously regulated by the alveolus compression and expansion and protects the alveoli from collapsing. Inhaled NPs can reach deep into the lungs and interfere with the biophysical properties of the lung components. The interaction mechanisms of bare gold nanoparticles (AuNPs) with the LS monolayer and the consequences of the interactions on lung function are not well understood. Coarse-grained molecular dynamics simulations were carried out to elucidate the interactions of AuNPs with simplified LS monolayers at the nanoscale. It was observed that the interactions of AuNPs and LS components deform the monolayer structure, change the biophysical properties of LS and create pores in the monolayer, which all interfere with the normal lungs function. The results also indicate that AuNP concentrations >0.1 mol% (of AuNPs/lipids) hinder the lowering of the LS surface tension, a prerequisite of the normal breathing process. Overall, these findings could help to identify the possible consequences of airborne NPs inhalation and their contribution to the potential development of various lung diseases.  相似文献   

10.
Crane JM  Hall SB 《Biophysical journal》2001,80(4):1863-1872
Films of pulmonary surfactant in the lung are metastable at surface pressures well above the equilibrium spreading pressure of 45 mN/m but commonly collapse at that pressure when compressed in vitro. The studies reported here determined the effect of compression rate on the ability of monolayers containing extracted calf surfactant at 37 degrees C to maintain very high surface pressures on the continuous interface of a captive bubble. Increasing the rate from 2 A(2)/phospholipid/min (i.e., 3% of (initial area at 40 mN/m)/min) to 23%/s produced only transient increases to 48 mN/m. Above a threshold rate of 32%/s, however, surface pressures reached > 68 mN/m. After the rapid compression, static films maintained surface pressures within +/- 1 mN/m both at these maximum values and at lower pressures following expansion at < 5%/min to > or = 45 mN/m. Experiments with dimyristoyl phosphatidylcholine at 37 degrees C produced similar results. These findings indicate that compression at rates comparable to values in the lungs can transform at least some phospholipid monolayers from a form that collapses readily at the equilibrium spreading pressure to one that is metastable for prolonged periods at higher pressures. Our results also suggest that transformation of surfactant films can occur without refinement of their composition.  相似文献   

11.
Lung pressure-volume hysteresis of cat lungs has been found by Hildebrandt (J. Appl. Physiol. 28, 365-372, 1970) to be 20-50% larger than predicted from stress adaptation data on the basis of a viscoelastic model. We have reinvestigated this phenomenon in isolated rat lungs with a different approach, in which the approximation inherent to using a model is avoided : Lung transfer function was derived from the digitally-computed Laplace transform of the pressure decay following a step volume change and used to predict lung pressure-flow relationship in the frequency domain. The latter was expressed in terms of lung effective resistance (Rlc) and effective elastance (Elc), and compared to the observed values (Rl and El) in the frequency range 0.01-0.5 Hz. The measurements were made in 5 lungs at a transpulmonary pressure (Pl) of 0.5 kPa and in 5 others at a Pl of 0.8 kPa. Rl was found to be 23-41% larger than Rlc at Pl = 0.5 and 29-51% larger at Pl = 0.8. El did not differ significantly from Elc at Pl = 0.5 but was 14-28% larger at Pl = 0.8. These results are in good agreement with previous findings. The differences between Rl and Rlc are proportional to the reciprocal of frequency and, thus, correspond to a rate-independent dissipation. They are consistent with a yield stress of 3-6 Pa.  相似文献   

12.
During fetal life the lung develops as a liquid-filled structure with low blood flow compared with postnatal life. We studied the effects of liquid expansion of the fetal lung by measuring vascular conductance in perfused lungs in situ and arterial diameters in excised lungs of fetal lambs. Pulmonary vascular conductance invariably rose as the lung was deflated from its initial volume; maximal deflation to residual volume increased conductance 122%. With reexpansion, conductance fell progressively, culminating in cessation of flow at lung volumes of twice the initial volume. These changes persisted after vagotomy and thoracic sympathectomy and therefore were mechanical in character. Lung expansion from residual volume initially expanded 300- to 500-micron arteries but compressed arteries greater than 1,500 micron. Further expansion reduced the caliber of all arteries. Thus increasing lung liquid volume progressively constricts the pulmonary circulation in the fetus. Because the fetal pulmonary vascular resistance-lung volume relationship differs from that of the U-shaped form found in adult lungs, concepts based on the adult pulmonary circulation are not appropriate for liquid-filled fetal lungs.  相似文献   

13.
For pulmonary structure-function analysis excised rabbit lungs were fixed by vascular perfusion at six points on the pressure-volume (P-V) curve, i.e. at 40, 80, and 100% of total lung capacity (TLC) on inflation, at 80 and 40% TLC on deflation, and at 80% TLC on reinflation. Before fixation alveolar surface tensions (gamma) were measured in individual alveoli over the entire P-V loop, using an improved microdroplet method. A maximal gamma of approximately 30 mN/m was measured at TLC, which decreased during lung deflation to about 1 mN/m at 40% TLC. Surface tensions were considerably higher on the inflation limb starting from zero pressure than on the deflation limb (gamma-V hysteresis). In contrast, the corresponding alveolar surface area-volume (SA-V) relationship did not form a complete hysteresis over the entire volume range. There was a considerable difference in SA between lungs inflated to 40% TLC (1.49 +/- 0.11 m2) and lungs deflated to 40% TLC (2.19 +/- 0.21 m2), but at 80% TLC the values of SA were essentially the same regardless of the volume history. The data indicate that the gamma-SA hysteresis is only in part accountable for the P-V hysteresis and that the determinative factors of alveolar geometry change with lung volume. At low lung volumes airspace dimensions appear to be governed by an interplay between surface and tissue forces. At higher lung volumes the tissue forces become predominant.  相似文献   

14.
Recent advances in the ventilation of patients with acute respiratory distress syndrome (ARDS), including ventilation at low lung volumes, have resulted in a decreased mortality rate. However, even low-lung volume ventilation may exacerbate lung injury due to the cyclic opening and closing of fluid-occluded airways. Specifically, the hydrodynamic stresses generated during airway reopening may result in epithelial cell (EpC) injury. We utilized an in vitro cell culture model of airway reopening to investigate the effect of reopening velocity, airway diameter, cell confluence, and cyclic closure/reopening on cellular injury. Reopening dynamics were simulated by propagating a constant-velocity air bubble in an adjustable-height parallel-plate flow chamber. This chamber was occluded with different types of fluids and contained either a confluent or a subconfluent monolayer of EpC. Fluorescence microscopy was used to quantify morphological properties and percentage of dead cells under different experimental conditions. Decreasing channel height and reopening velocity resulted in a larger percentage of dead cells due to an increase in the spatial pressure gradient applied to the EpC. These results indicate that distal regions of the lung are more prone to injury and that rapid inflation may be cytoprotective. Repeated reopening events and subconfluent conditions resulted in significant cellular detachment. In addition, we observed a larger percentage of dead cells under subconfluent conditions. Analysis of this data suggests that in addition to the magnitude of the hydrodynamic stresses generated during reopening, EpC morphological, biomechanical, and microstructural properties may also be important determinants of cell injury.  相似文献   

15.
Understanding the behavior of skeletal muscle is critical to implementing computational methods to study how the body responds to compressive loading. This work presents a novel approach to studying the fully nonlinear response of skeletal muscle in compression. Porcine muscle was compressed in both the longitudinal and transverse directions under five stress relaxation steps. Each step consisted of 5% engineering strain over 1 s followed by a relaxation period until equilibrium was reached at an observed change of 1 g/min. The resulting data were analyzed to identify the peak and equilibrium stresses as well as relaxation time for all samples. Additionally, a fully nonlinear strain energy density–based Prony series constitutive model was implemented and validated with independent constant rate compressive data. A nonlinear least squares optimization approach utilizing the Levenberg–Marquardt algorithm was implemented to fit model behavior to experimental data. The results suggested the time-dependent material response plays a key role in the anisotropy of skeletal muscle as increasing strain showed differences in peak stress and relaxation time (p < 0.05), but changes in equilibrium stress disappeared (p > 0.05). The optimizing procedure produced a single set of hyper-viscoelastic parameters which characterized compressive muscle behavior under stress relaxation conditions. The utilized constitutive model was the first orthotropic, fully nonlinear hyper-viscoelastic model of skeletal muscle in compression while maintaining agreement with constitutive physical boundaries. The model provided an excellent fit to experimental data and agreed well with the independent validation in the transverse direction.  相似文献   

16.
Pressure-related deep tissue injury (DTI) represents a severe pressure ulcer, which initiates in compressed muscle tissue overlying a bony prominence and progresses to more superficial tissues until penetrating the skin. Individual subjects with impaired motor and/or sensory capacities are at high risk of developing DTI. Impaired diffusion of critical metabolites in compressed muscle tissue may contribute to DTI, and impaired diffusion of tissue damage biomarkers may further impose a problem in developing early detection blood tests. We hypothesize that compression of muscle tissue between a bony prominence and a supporting surface locally influences the diffusion capacity of muscle. The objective of this study was therefore, to determine the effects of large compression strains on free diffusion in a tissue-engineered skeletal muscle model. Diffusion was measured with a range of fluorescently labeled dextran molecules (10, 20, 150kDa) whose sizes were representative of both hormones and damage biomarkers. We used fluorescence recovery after photobleaching (FRAP) to compare diffusion coefficients (D) of the different dextrans between the uncompressed and compressed (48-60% strain) states. In a separate experiment, we simulated the effects of local partial muscle ischemia in vivo, by reducing the temperature of compressed specimens from 37 to 34 degrees C. Compared to the D in the uncompressed model system, values in the compressed state were significantly reduced by 47+/-22% (p<0.02). A 3 degrees C temperature decrease further reduced D in the compressed specimens by 10+/-6% (p<0.05). In vivo, the effects of large strains and ischemia are likely to be summative, and hence, the present findings suggest an important role of impaired diffusion in the etiology of DTI, and should also be considered when developing biochemical screening methods for early detection of DTI.  相似文献   

17.
Trapped gas volume (Vtg) was obtained after 5 and 10 repeated inflation-deflation cycles between transpulmonary pressure (Ptp) = 0 and 30 cmH2O in 12 experimental groups of freshly excised rabbit lungs. Gas flow rate was 1.0 ml/s except in one group (0.4 ml/s). In lungs degassed by O2 absorption (Dabs), Vtg increased from an initial 12-15% total lung capacity (TLC) (1st cycle) to 40% TLC (10th cycle), whereas in vacuum-degassed lungs (Dvac) the final Vtg was almost unchanged, remaining at less than 20% TLC. However, with the slower flow rate, Vtg in Dvac became 60% TLC. Increased lung water was not found in Dabs and therefore could not account for the above difference. In lungs not degassed after excision, Vtg increased roughly in proportion to the duration of passive collapse at Ptp = 0. However, a single brief exposure to a negative airway pressure (Pao = -10 cmH2O) resulted in a greater rate of increase of Vtg than 15-min collapse. When any of the foregoing groups were vacuum degassed after 5 cycles, they then resembled the Dvac group and showed almost no increase of Vtg in successive cycles. In Dvac, negative Pao and 15-min collapse had only minor effects on increasing Vtg. Thus, at a flow rate of 1 ml/s vacuum degassing almost eliminated all tendencies to trap gas in rabbit lungs, but the tendency was more than restored at slower flows. Brief airway closure by negative tracheal pressure can markedly enhance subsequent trapping of collapsed lungs. Differences arising from degassing methods might be due to effects on bronchomotor tone or on the physical characteristics of airway lining.  相似文献   

18.
Organ volume is a critical parameter in morphometric analysis. The special problems of the lung as a nonsolid organ are overcome by tracheal instillation of fixatives at a constant airway pressure (P(aw)). Lung volume can change significantly after fixation as P(aw) change. To determine the variation of lung volume after fixation, we measured the volume of intact fixed lungs by serial immersion in saline (V(imm)) at selected time points, compared with measurements obtained by point counting [Cavalieri Principle (V(cav))] after tissue sectioning to release P(aw). V(imm) was systematically higher than V(cav) by 25% in dog lungs and 13% in guinea pig lungs (P = 0.0003 between species). This size-dependent variability reflects residual elastic recoil, refolding and/or crumpling of alveolar septa after fixation. V(imm) remained 14% higher than V(cav) in dog lungs even after pressure release. V(cav)/V(imm) was systematically lower in the upper than the lower strata of the same lung. We conclude that V(cav) measured on lung slices after relaxation of P(aw) more precisely represents the state of the tissue to be used for subsequent morphometric analysis, particularly for large lungs.  相似文献   

19.
Understanding the stress relaxation behavior of the compression bandage could be very useful in determining the behavior of the interface pressure exerted by the bandage on a limb during the course of the compression treatment. There has been no comprehensive study in the literature to investigate the pressure profile (interface pressure with time) generated by a compression bandage when applied at different levels of strain. The present study attempts to describe the pressure profile, with the use of a quasi-linear viscoelastic model, generated by a compression bandage during compression therapy. The quasi-linear viscoelastic (QLV) theory proposed by Fung (Fung, 1972, "Stress Strain History Relations of Soft Tissues in Simple Elongation," Biomechanics: Its Foundations and Objectives, Y. C. Fung, N. Perrone, and M. Anliker, eds., Prentice-Hall, Englewood Cliffs, NJ, pp. 181-207). was used to model the nonlinear time- and history-dependent relaxation behavior of the bandage using the ramp strain approach. The regression analysis was done to find the correlation between the pressure profile and the relaxation behavior of the bandage. The parameters of the QLV model, describing the relaxation behavior of the bandage, were used to determine the pressure profile generated by the bandage at different levels of strain. The relaxation behaviors of the bandage at different levels of strain were well described by the QLV model parameters. A high correlation coefficient (nearly 0.98) shows a good correlation of the pressure profile with the stress relaxation behavior of the bandage.The prediction of the pressure profile using the QLV model parameters were in agreement with the experimental data. The pressure profile generated by a compression bandage could be predicted using the QLV model describing the nonlinear relaxation behavior of the bandage. This new application of the QLV theory helps in evaluating the bandage performance during compression therapy as scientific wound care management.  相似文献   

20.
Lymph flow and lung weight in isolated sheep lungs   总被引:2,自引:0,他引:2  
To study the relationship between lung weight and lymph flow, we used an in situ, isolated sheep lung preparation that allowed these two variables to be measured simultaneously. All lungs were perfused for 4.5 h at a constant rate of 100 ml X min-1 X kg-1. In control lungs, the left atrial pressure (Pla) was kept at atmospheric pressure. In experimental lungs, Pla was kept atmospheric except for a 50-min elevation to 18 mmHg midway through the perfusion. During this period of left atrial hypertension, pulmonary arterial pressure rose from 18 to 31 mmHg, lymph flow rose from 3 to 12 ml/h, and the lymph-to-plasma oncotic pressure ratio (pi L/pi P) fell from 0.7 to 0.48. After left atrial pressure was returned to control, pulmonary arterial pressure, lymph flow, and pi L/pi P all returned to control levels. The rate of weight gain after the return of left atrial pressure to control was also the same as that in the control group. However, during the period of left atrial hypertension 135 ml of fluid were filtered into the lung, and this large increase in lung weight remained after the pressure was lowered. The presence of this substantial excess lung water despite control values for vascular pressures, lymph flow, rate of weight gain, and pi L/pi P suggests that the absolute amount of lung water has little influence on the dynamic aspects of lung fluid balance. These results are consistent with a two-compartment model of the interstitial space, where only one of the compartments is readily drained by the lymphatics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号