首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A comparative study of the Bacillus subtilis neutral protease and Bacillus thermoproteolyticus thermolysin calalyzed hydrolysis of a few dipeptide sustrates including furylacryloylglycyl-L -leucine amide is reported. While differences in the kcat/Km were observed between the two enzymes toward substrates in which phenylalanine or leucine donated the amino group of the peptide bond, secondary effects of substituents on the carbonyl donating amino acid and pH profiles were quite similar. Differences were also observed toward protein substrates as compared to dipeptides.  相似文献   

2.
The inhibition of thermolysin by an optically active silicon-containing amino acid, 3-trimethylsilylalanine (TMS-Ala), and its derivatives was examined by considering the similarity of structure between TMS-Ala and leucine. Although free l- and d-TMS-Ala did not show the inhibition, several derivatives of l-TMS-Ala, especially Z-l-TMS-Ala and l-Leu-(l-TMS-Ala), exhibited a higher inhibitory activity toward thermolysin than did Z-l-Leu and l-Leu-l-Leu respectively. Effects of TMS-Ala on the activity of its derivatives and the mode of interaction between the derivatives of TMS-Ala and thermolysin are also discussed. Received: 24 February 1999 / Received last revision: 4 June 1999 / Accepted: 27 June 1999  相似文献   

3.
The kinetics of the hydrolysis of 3-(2-furylacryloyl)-glycycl-l-leucine amide by thermolysin has been reinvestigated. It was found that the Km for the enzyme substrate interaction is 2.5 × 10?3m at pH 7.2. This Km is an order of magnitude less than what has been previously assumed to be the Km for the enzyme-substrate interaction. The normally recommended assay has 1–3 × 10?3m substrate and is based on the assumption that the substrate concentration is much less than the Km. Our data indicate that this assumption appears to be invalid. The hydrolysis of 3-(2-furylacryloyl)-glycyl-l-leucine amide results in a maximum decrease in absorbance at 322 nm. The change in absorbance is nearly 10-fold greater at 322 nm than the change in absorbance at 345 nm where the hydrolysis has been customarily followed. By following the hydrolysis of the substrate at 10?4m at 322 nm it is possible to work under conditions where the substrate concentration is much less than the Km.  相似文献   

4.
5.
The catalytic mechanism for peptide hydrolysis by thermolysin has been investigated using the B3LYP hybrid density functional method. The starting structure for the calculations was based on the X-ray crystal structure of the enzyme inhibited with the ZF (p)LA phosphonamidate transition-state analogue. Besides the three Zn ligands His142, His146 and Glu166, a few additional residues were also included in the model. Following the order of importance, the outer-sphere ligands Glu143, His231 and Asp226 were shown to play significant catalytic roles, well correlated with results from site-directed mutagenesis experiments. A single-step reaction mechanism was obtained starting from the initial enzyme-substrate complex with a pentacoordinated metal center and proceeding to the enzyme-carboxylate complex as a final product, following a proposal by Matthews and co-workers. The transition state combines a nucleophilic water oxygen attack on the peptide carbon and a proton transfer from the water to the peptide nitrogen, mediated by the Glu143 carboxylate. A free activation energy of 15.2 kcal/mol was obtained, compared to the experimental 12.4-16.3 kcal/mol range for various peptide substrates. An interesting aspect of the present single-step mechanism is that the Glu143 carboxylate moves a significant distance of ~1.0 A. Different chemical models were examined, both related to the system size and proper side-chain modeling. The significance of the protein frame rigidity around the active site was estimated by fixing and subsequently releasing the edge atom positions. Finally, alternative mechanistic proposals are briefly summarized.  相似文献   

6.
N-(Benzyloxycarbonyl)-L-aspartyl-L-phenylalanine methyl ester (Z-AspPheOMe), a precursor of the aspartame, and N-(benzyloxycarbonyl)-L-phenylalanyl-Lphenylalanine methyl ester (Z-PhePheOMe) were synthesized from the respective amino acid derivatives with an immobilized thermolysin (EC 3.4.24.4) in ethyl acetate. Various factors affecting the synthesis of these dipeptide precursors were clarified. The initial synthetic rate was the highest at the water content of 3.5% for both reactions. The substrate concentration dependencies of the initial synthetic rate of Z-AspkPheOMe and Z-PhePheOMe with the immobilized enzyme in ethyl acetate were different from those in an aqueous buffer solution saturated with ethyl acetate but similar to those in the aqueous/organic biphasic system using the free enzyme. Particularly, the initial synthetic rate of Z-AspPhOMe increased in order higher than first order with respect to the concentration of L-phenylalanine methyl ester (PheOMe), whereas it decreased sharply with the concentration of N-(benzyloxycarbonyl)-L-aspartic acid (Z-Asp). Such kinetic behavior could be explained by regarding the inside of the immobilized enzyme as being a biphasic mode composed from the organic phase and aqueous phase where the enzymatic reaction takes place. The reaction in the aqueous/organic biphasic system using the free enzyme could be simulated by taking into consideration the partition of the substrate and the initial rate of synthesis in the aqueous buffer saturated with ethyl acetate. Based on this analysis, the rate of reaction with the immobilized enzyme in ethyl acetate could also be predicted. Z-AsPheOMe and Z-PhePheOMe were synthesized by the fed-batch method where the acid component of the substrate was intermittently added during the course of reaction and by the batch method. In the synthesis of Z-AspPheOMe, the synthetic rate and maximum yield of reaction as well as the stability of the immobilized enzyme were higher in the fed-batch reaction than those in the batch reaction. In the synthesis of Z-PhePheOMe, the results obtained by both methods were similar. (c) 1994 John Wiley & Sons, Inc.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
New manganese(II) complexes of substituted pyridino pentaaza macrocyclic ligands were prepared. The amino-, carboxy-, or other functional groups were placed in the vicinity of the axial position of the metal complex. Their SOD-like activity was determined by cytochrome c assay and compared with one another. The activities of pyridine analogs (12ab and 13) and m-substituted analogs (12c and 12j) were similar and significantly better than that of the standard compound M-40403. The most potent compound was an o-aminobenzoyl derivative 12i, while the o-carboxybenzoyl analog 12d was the lowest active compound.  相似文献   

15.
16.
17.
The conformation of thermolysin   总被引:20,自引:0,他引:20  
  相似文献   

18.
19.
20.
The action of some new MDP derivatives on functional activity of murine T-lymphocytes and macrophages was studied. The following tests have been used: proliferation of spleen cells in one-way allo-MLC; IL-1 and TNF production by peritoneal macrophages treated with the preparations. The most expressed enhancement of lymphocyte proliferative response in MLC has been exerted by beta C7H15 MDP and beta C16H33 MDP (stimulation indexes 31-69%). beta C7H15 MDP, beta C16H33 MDP and polyacrylamide-MDP (P-MDP) alone or in combination with LPS caused elevated secretion of IL-1 by macrophages. While beta C7H15 MDP was as active as MDP, beta C16H33 MDP and P-MDP manifested increased ability to stimulate IL-1 production in comparison with MDP. beta C7H15 MDP, beta C16H33 MDP, P-MDP and MDP induced similar level of TNF production by murine macrophages. However, simultaneous treatment of macrophages with beta C16H33 MDP and LPS resulted in more significant enhancement of TNF production than combination LPS + MDP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号