首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Q X Hua  M A Weiss 《Biochemistry》1991,30(22):5505-5515
The solution structure and dynamics of human insulin are investigated by 2D 1H NMR spectroscopy in reference to a previously analyzed analogue, des-pentapeptide(B26-B30) insulin (DPI; Hua, Q.X., & Weiss, M.A. (1990) Biochemistry 29, 10545-10555). This spectroscopic comparison is of interest since (i) the structure of the C-terminal region of the B-chain has not been determined in the monomeric state and (ii) the role of this region in binding to the insulin receptor has been the subject of long-standing speculation. The present NMR studies are conducted in the presence of an organic cosolvent (20% acetic acid), under which conditions both proteins are monomeric and stably folded. Complete sequential assignment of human insulin is obtained and leads to the following conclusions. (1) The secondary structure of the insulin monomer (three alpha-helices and B-chain beta-turn) is similar to that observed in the 2-Zn crystal state. (2) The folding of DPI is essentially the same as the corresponding portion of intact insulin, in accord with the similarities between their respective crystal structures. However, differences between insulin and DPI are observed in the extent of conformational broadening of amide resonances, indicating that the presence or absence of residues B26-B30 influences the overall dynamics of the protein on the millisecond time scale. (3) Residues B24-B28 adopt an extended configuration in the monomer and pack against the hydrophobic core as in crystallographic dimers; residues B29 and B30 are largely disordered. This configuration differs from that described in a more organic milieu (35% acetonitrile; Kline, A.D., & Justice, R.M., Jr. (1990) Biochemistry 29, 2906-2913), suggesting that the conformation of insulin in the latter study may have been influenced by solvent composition. (4) The insulin fold is shown to provide a model for collective motions in a protein with implications for the mechanism of protein-protein recognition. To our knowledge, this paper describes the first detailed analysis of a protein NMR spectrum under conditions of extensive conformational broadening. Such an analysis is made possible in the present case by comparative study of an analogue (DPI) with more tractable spectroscopic properties.  相似文献   

2.
The solution structure of a new B-chain mutant of bovine insulin, in which the cysteines B7 and B19 are replaced by two serines, has been determined by circular dichroism, 2D-NMR and molecular modeling. This structure is compared with that of the oxidized B-chain of bovine insulin [Hawkins et al. (1995) Int. J. Peptide Protein Res.46, 424-433]. Circular dichroism spectroscopy showed in particular that a higher percentage of helical secondary structure for the B-chain mutant is estimated in trifluoroethanol solution in comparison with the oxidized B-chain. 2D-NMR experiments confirmed, among multiple conformations, that the B-chain mutant presents defined secondary structures such as a alpha-helix between residues B9 and B19, and a beta-turn between amino acids B20 and B23 in aqueous trifluoroethanol. The 3D structures, which are consistent with NMR data and were obtained using a simulated annealing protocol, showed that the tertiary structure of the B-chain mutant is better resolved and is more in agreement with the insulin crystal structure than the oxidized B-chain structure described by Hawkins et al. An explanation could be the presence of two sulfonate groups in the oxidized insulin B-chain. Either by their charges and/or their size, such chemical groups could play a destructuring effect and thus could favor peptide flexibility and conformational averaging. Thus, this study provides new insights on the folding of isolated B-chains.  相似文献   

3.
Q X Hua  S E Shoelson  M A Weiss 《Biochemistry》1992,31(47):11940-11951
Insulin's mechanism of receptor binding is not well understood despite extensive study by mutagenesis and X-ray crystallography. Of particular interest are "anomalous" analogues whose bioactivities are not readily rationalized by crystal structures. Here the structure and dynamics of one such analogue (GlyB24-insulin) are investigated by circular dichroism (CD) and isotope-aided 2D-NMR spectroscopy. The mutant insulin retains near-native receptor-binding affinity despite a nonconservative substitution (PheB24-->Gly) in the receptor-binding surface. Relative to native insulin, GlyB24-insulin exhibits reduced dimerization; the monomer (the active species) exhibits partial loss of ordered structure, as indicated by CD studies and motional narrowing of selected 1H-NMR resonance. 2D-NMR studies demonstrate that the B-chain beta-turn (residues B20-23) and beta-strand (residues B24-B28) are destabilized; essentially native alpha-helical secondary structure (residues A3-A8, A13-A18, and B9-B19) is otherwise maintained. 13C-Isotope-edited NOESY studies demonstrate that long-range contacts observed between the B-chain beta-strand and the alpha-helical core in native insulin are absent in the mutant. Implications for the mechanism of insulin's interaction with its receptor are discussed.  相似文献   

4.
Sequence-specific 1H NMR assignments are reported for the active L-tryptophan-bound form of Escherichia coli trp repressor. The repressor is a symmetric dimer of 107 residues per monomer; thus at 25 kDa, this is the largest protein for which such detailed sequence-specific assignments have been made. At this molecular mass the broad line widths of the NMR resonances preclude the use of assignment methods based on 1H-1H scalar coupling. Our assignment strategy centers on two-dimensional nuclear Overhauser spectroscopy (NOESY) of a series of selectively deuterated repressor analogues. A new methodology was developed for analysis of the spectra on the basis of the effects of selective deuteration on cross-peak intensities in the NOESY spectra. A total of 90% of the backbone amide protons have been assigned, and 70% of the alpha and side-chain proton resonances are assigned. The local secondary structure was calculated from sequential and medium-range backbone NOEs with the double-iterated Kalman filter method [Altman, R. B., & Jardetzky, O. (1989) Methods Enzymol. 177, 218-246]. The secondary structure agrees with that of the crystal structure [Schevitz, R., Otwinowski, Z., Joachimiak, A., Lawson, C. L., & Sigler, P. B. (1985) Nature 317, 782], except that the solution state is somewhat more disordered in the DNA binding region and in the N-terminal region of the first alpha-helix. Since the repressor is a symmetric dimer, long-range intersubunit NOEs were distinguished from intrasubunit interactions by formation of heterodimers between two appropriate selectively deuterated proteins and comparison of the resulting NOESY spectrum with that of each selectively deuterated homodimer. Thus, from spectra of three heterodimers, long-range NOEs between eight pairs of residues were identified as intersubunit NOEs, and two additional long-range intrasubunits NOEs were assigned.  相似文献   

5.
An 80 amino acid polypeptide corresponding to the DNA-binding domain (DBD) of the human retinoic acid receptor beta (hRAR-beta) has been studied by 1H homonuclear and 15N-1H heteronuclear two- and three-dimensional (2D and 3D) NMR spectroscopy. The polypeptide has two putative zinc fingers homologous to those of the receptors for steroid and thyroid hormones and vitamin D3. The backbone 1H resonances as well as over 90% of the side-chain 1H resonances have been assigned by 1H homonuclear 2D techniques except for the three N-terminal residues. The assignments have been confirmed further by means of 15N-1H heteronuclear 3D techniques, which also yielded the assignments of the 15N resonances. Additionally, stereospecific assignments of methyl groups of five valine residues were made. Sequential and medium-range NOE connectivities indicate several elements of secondary structure including two alpha-helices consisting of residues E26-Q37 and Q61-E70, a short antiparallel beta-sheet consisting of residues P7-F9 and S23-C25, four turns consisting of residues P7-V10, I36-N39, D47-C50, and F69-G72, and several regions of extended peptide conformation. Similarly, two helices are found in the glucocorticoid receptor (GR) DBD in solution [H?rd et al. (1990) Science 249, 157-160] and in crystal [Luisi et al. (1991) Nature 352, 497-505], and in the estrogen receptor (ER) DBD in solution [Schwabe et al. (1990) Nature 348, 458-461], although the exact positions and sizes of the helices differ somewhat. Furthermore, long-range NOEs suggest the existence of a hydrophobic core formed by the two helices.  相似文献   

6.
The crystal structure of Escherichia coli adenylate kinase (AKe) revealed three main components: a CORE domain, composed of a five-stranded parallel beta-sheet surrounded by alpha-helices, and two peripheral domains involved in covering the ATP in the active site (LID) and binding of the AMP (NMPbind). We initiated a long-term NMR study aiming to characterize the solution structure, binding mechanism and internal dynamics of the various domains. Using single (15N) and double-labeled (13C and 15N) samples and double- and triple-resonance NMR experiments we assigned 97% of the 1H, 13C and 15N backbone resonances, and proton and 13Cbeta resonances for more than 40% of the side chains in the free protein. Analysis of a 15N-labeled enzyme in complex with the bi-substrate analogue [P1,P5-bis(5'-adenosine)-pentaphosphate] (Ap5A) resulted in the assignment of 90% of the backbone 1H and 15N resonances and 42% of the side chain resonances. Based on short-range NOEs and 1H and 13C secondary chemical shifts, we identified the elements of secondary structure and the topology of the beta-strands in the unliganded form. The alpha-helices and the beta-strands of the parallel beta-sheet in solution have the same limits (+/- 1 residue) as those observed in the crystal. The first helix (alpha1) appears to have a frayed N-terminal side. Significant differences relative to the crystal were noticed in the LID domain, which in solution exhibits four antiparallel beta-strands. The secondary structure of the nucleoside-bound form, as deduced from intramolecular NOEs and the 1Halpha chemical shifts, is similar to that of the free enzyme. The largest chemical shift differences allowed us to map the regions of protein-ligand contacts. 1H/2H exchange experiments performed on free and Ap5A-bound enzymes showed a general decrease of the structural flexibility in the complex which is accompanied by a local increased flexibility on the N-side of the parallel beta-sheet.  相似文献   

7.
The aromatic 1H NMR resonances of the insulin monomer are assigned at 500 MHz by comparative studies of chemically modified and genetically altered variants, including a mutant insulin (PheB25----Leu) associated with diabetes mellitus. The two histidines, three phenylalanines, and four tyrosines are observed to be in distinct local environments; their assignment provides sensitive markers for studies of tertiary structure, protein dynamics, and protein folding. The environments of the tyrosine residues have also been investigated by photochemically induced dynamic nuclear polarization (photo-CIDNP) and analyzed in relation to packing constraints in the crystal structures of insulin. Dimerization involving specific B-chain interactions is observed with increasing protein concentration and is shown to depend on temperature, pH, and solvent composition. In the monomer large variations are observed in the line widths of amide resonances, suggesting intermediate exchange among conformational substates; such substates may relate to conformational changes observed in different crystal states and proposed to occur in the hormone-receptor complex. Additional evidence for multiple conformations in solution is provided by comparative studies of an insulin analogue containing a peptide bond between residues B29 and A1 (mini-proinsulin). This analogue forms dimers and higher-order oligomers under conditions in which native insulin is monomeric, suggesting that the B29-A1 peptide bond stabilizes a conformational substate favorable for dimerization. Such stabilization is not observed in corresponding studies of native proinsulin, in which a 35-residue connecting peptide joins residues B30 and A1; this extended tether is presumably too flexible to constrain the conformation of the B-chain. The differences between proinsulin and mini-proinsulin suggest a structural mechanism for the observation that the fully reduced B29-A1 analogue folds more efficiently than proinsulin to form the correct pattern of disulfide bonds. These results are discussed in relation to molecular mechanics calculations of insulin based on the available crystal structures.  相似文献   

8.
R E Klevit  E B Waygood 《Biochemistry》1986,25(23):7774-7781
Sequence-specific resonance assignments of the 1H NMR spectrum of the 85-residue histidine-containing phosphocarrier protein (HPr) are complete [Klevit, R. E., Drobny, G. P., & Waygood, E. B. (1986) Biochemistry (first paper of three in this issue)]. Additional side-chain assignments have been made with long-range coherence transfer experiments [Klevit, R. E., & Drobny, G. P. (1986) Biochemistry (second paper of three in this issue)]. In this paper, the NMR assignments were used to determine the secondary structure and the tertiary folding of HPr in solution. The secondary structural elements of the protein were determined by visual inspection of the pattern of nearest-neighbor nuclear Overhauser effects (NOEs) and the presence of persistent amide resonances. Escherichia coli HPr consists of four beta-strands, three alpha-helices, four reverse turns, and several regions of extended backbone structure. Long-range NOEs, especially among side-chain protons, were used to determine the tertiary structure of the protein by use of the secondary structural components. The four beta-strands form a single antiparallel beta-pleated sheet. The hydrophobic faces of the alpha-helices interact to form a hydrophobic core and sit above the hydrophobic face of the beta-sheet, forming an open-face beta-sheet sandwich structure. The active site histidine, His-15, is on a short kinked segment of backbone that is accessible to the solvent. The positively charged phosphorylation site (His-15 and Arg-17) interacts with the negatively charged carboxyl terminus of the protein (Glu-85).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The 1H nuclear magnetic resonance (NMR) spectrum of Ca2+-saturated porcine calbindin D9k (78 amino acids, Mr 8800) has been assigned. Greater than 98% of the 1H resonances, including spin systems for each amino acid residue, have been identified by using an approach that integrates data from a wide range of two-dimensional scalar correlated NMR experiments [Chazin, Rance, & Wright (1988) J. Mol. Biol. 202, 603-626]. Due to the limited quantity of sample and conformational heterogeneity of the protein, two-dimensional nuclear Overhauser effect (NOE) experiments also played an essential role in the identification of spin systems. On the basis of the pattern of scalar connectivities, 43 of the 78 spin systems could be directly assigned to the appropriate residue type. This provided an ample basis for obtaining the sequence-specific resonance assignments. The elements of secondary structure are identified from sequential and medium-range NOEs, values of 3JNH alpha, and the location of slowly exchanging backbone amide protons. Four well-defined helices and a mini beta-sheet between the two calcium binding loops are present in solution. These elements of secondary structure and a few key long-range NOEs provided sufficient information to define the global fold of the protein in solution. Generally good agreement is found between the crystal structure of the minor A form of bovine calbindin D9k and the solution structure of intact porcine calbindin D9k. The only significant difference is a short one-turn helix in the loop between helices II and III in the bovine crystal structure, which is clearly absent in the porcine solution structure.  相似文献   

10.
The structure of human parathyroid hormone fragment (1-34) in a solvent mixture of water and trifluoroethanol has been determined by 1H nuclear magnetic resonance spectroscopy and a combination of distance geometry and molecular dynamic simulations. After complete assignment of the 1H signals, the nuclear Overhauser enhancement data imply the existence of two alpha-helices, comprising residues 3-9 and 17-28, joined by a nonstructured region. The absence of any long-range NOEs and the relative magnitudes of the sequential NOEs and the 3J(HNH alpha) values reflect an inherent flexibility within the entire fragment. The final structures refined by molecular dynamics further support the above results and allow discussion of structural-activity relationships.  相似文献   

11.
Insulin provides an important model for the application of genetic engineering to rational protein design and has been well characterized in the crystal state. However, self-association of insulin in solution has precluded complementary 2D NMR study under physiological conditions. We demonstrate here that such limitations may be circumvented by the use of a monomeric analogue that contains three amino acid substitutions on the protein surface (HisB10----Asp, ProB28----Lys, and LysB29----Pro); this analogue (designated DKP-insulin) retains native receptor-binding potency. Comparative 1H NMR studies of native human insulin and a series of three related analogues--(i) the singly substituted analogue [HisB10----Asp], (ii) the doubly substituted analogue [ProB28----Lys; LysB29----Pro], and (iii) DKP-insulin--demonstrate progressive reduction in concentration-dependent line-broadening in accord with the results of analytical ultracentrifugation. Extensive nonlocal interactions are observed in the NOESY spectrum of DKP-insulin, indicating that this analogue adopts a compact and stably folded structure as a monomer in overall accord with crystal models. Site-specific 2H and 13C isotopic labels are introduced by semisynthesis as probes for the structure and dynamics of the receptor-binding surface. These studies confirm and extend under physiological conditions the results of a previous 2D NMR analysis of native insulin in 20% acetic acid [Hua, Q. X., & Weiss, M. A. (1991) Biochemistry 30, 5505-5515]. Implications for the role of protein flexibility in receptor recognition are discussed with application to the design of novel insulin analogues.  相似文献   

12.
We present the results of studies of an aqueous sample of a highly {15N,2H} enriched protein, the SH3 domain from Fyn. Measurements of 1H relaxation and interactions between H2O solvent and exchangeable protons are given, as well as a method for increasing the effective longitudinal relaxation of solvent exchangeable proton resonances. The long-range isotope shifts are measured, for 1H and 15N, which arise due to perdeuteration. Simulations, which employed a 7 or 8 spin relaxation matrix analysis, were compared to the experimental data from a time series of 2D NOESY datasets for some resonances. The agreement between experiment and simulation suggest that, with this 1H dilute sample, relatively long mixing times (up to 1.2 s) can be used to detect specific dipolar interactions between amide protons up to about 7Å apart. A set of 155 inter-amide NOEs and 7 side chain NOEs were thus identified in a series of 3D HSQC-NOESY-HSQC experiments. These data, alone and in combination with previously collected restraints, were used to calculate sets of structures using X-PLOR. These results are compared to the available X-ray and NMR structures of the Fyn SH3 domain.  相似文献   

13.
Cellular insulin stimulation generates a burst of H(2)O(2) that modulates protein-tyrosine phosphorylation in the insulin action pathway, in part by the inhibition of redox-sensitive protein-tyrosine phosphatases [J. Biol. Chem. 276 (2001) 21938]. Blocking the insulin-induced rise in H(2)O(2) with the NADPH oxidase inhibitor diphenyleneiodonium (DPI) strongly attenuated the activation of phosphatidylinositol 3' (PI 3')-kinase, Akt and GLUT4 translocation by insulin in 3T3-L1 adipocytes; however, under identical conditions, we observed a paradoxical increase in the activation of p42/p44 mitogen-activated protein (MAP) kinase. DPI inhibited the insulin-stimulated tyrosine phosphorylation of the insulin receptor and IRS-1/2, and also reduced the association of Grb2 with IRS-1, suggesting that the effect of DPI on MAP kinase activation occurred downstream of the IR and IRS proteins. DPI increased the insulin-stimulated phosphorylation of p42/p44 MAP kinase with no change in basal, and increased insulin-stimulated MAP kinase kinase (MEK) activity by a similar degree. DPI enhanced basal Grb2-Sos binding and reduced the effect of insulin to potentiate the dissociation of the Grb2-Sos complex, suggesting that the effect of DPI was mediated upstream of Raf-1. Cell treatment with dibutyryl cAMP significantly reduced the enhancement of MAP kinase activation in the presence of DPI. However, forskolin, acting in a PKA-independent manner, increased the insulin stimulation of MAP kinase and MEK, but fully abrogated the effect of DPI to enhance these insulin responses. PLCgamma inhibition with U73122 blocked the insulin stimulation of MAP kinase and MEK as well as the enhancing effect of DPI on these responses. PKC activation strongly stimulated MAP kinase and MEK activation, even in the presence of U73122, consistent with PKC acting downstream of PLCgamma. These data show that the insulin-stimulated oxidant signal differentially affects the two major downstream components of the insulin signaling pathway, PI 3'-kinase and MAP kinase, and cross-talk between insulin action, PLCgamma and, to a lesser extent, PKA modulates the net cellular effects of insulin-stimulated cellular H(2)O(2).  相似文献   

14.
R E Klevit  D E Wemmer  B R Reid 《Biochemistry》1986,25(11):3296-3303
High-resolution NMR techniques have been used to examine the structural and dynamical features of the interaction between distamycin A and the self-complementary DNA dodecamer duplex d-(CGCGAATTCGCG)2. The proton resonances of d(CGCGAATTCGCG)2 have been completely assigned by previous two-dimensional NMR studies [Hare, D. R., Wemmer, D. E., Chou, S. H., Drobny, G., & Reid, B. R. (1983) J. Mol. Biol. 171, 319-336]. Addition of the asymmetric drug molecule to the symmetric dodecamer leads to the formation of an asymmetric complex as evidenced by a doubling of DNA resonances over much of the spectrum. In two-dimensional exchange experiments, strong cross-peaks were observed between uncomplexed DNA and drug-bound DNA resonances, permitting direct assignment of many drug-bound DNA resonances from previously assigned free DNA resonances. Weaker exchange cross-peaks between formerly symmetry related DNA resonances indicate that the drug molecule flips head-to-tail on one duplex with half the frequency at which it leaves the DNA molecule completely. In experiments performed in H2O, nuclear Overhauser effects (NOEs) were observed from each drug amide proton to an adenine C2H and a pyrrole H3 ring proton. In two-dimensional nuclear Overhauser experiments performed on D2O solutions, strong intermolecular NOEs were observed between each of the three pyrrole H3 resonances of the drug and an adenine C2H resonance, with weaker NOEs observed between the drug H3 resonances and C1'H resonances. The combined NOE data allow us to position the distamycin A unambiguously on the DNA dodecamer, with the drug spanning the central AATT segment in the minor groove.  相似文献   

15.
Peptide T, an octapeptide of sequence ASTTTNYT that binds to human T cells, was studied as a zwitterion in DMSOd6 solution by means of proton NMR spectroscopy at 500 MHz. The unusual dispersion of the resonances of residues of the same type (T) makes it possible to assign all resonances to specific residues by means of several 2D techniques. The non-random nature of the conformation is substantiated by the observation of sequential nuclear Overhauser enhancements (NOEs). The low value of the temperature coefficient of the chemical shift of the NH of T8 and a diagnostic NOE between the NHs of T7 and T8 hint that a beta-turn including T5, N6, Y7 and T8 is a prominent conformational feature in solution. The ring current high field shifts of the methyl group and of the NH of T8 are consistent with an interaction with the side-chain of Y7, favoured by the beta-turn.  相似文献   

16.
Here we present evidence that in water/acetonitrile solvent detailed structural and dynamic information can be obtained for important proteins that are naturally present as oligomers under native conditions. An NMR-derived human insulin monomer structure in H2O/CD3CN, 65/35 vol%, pH 3.6 is presented and compared with the available X-ray structure of a monomer that forms part of a hexamer (Acta Crystallogr. 2003 Sec. D59, 474) and with NMR structures in water and organic cosolvent. Detailed analysis using PFGSE NMR, temperature-dependent NMR, dilution experiments and CSI proves that the structure is monomeric in the concentration and temperature ranges 0.1–3 mM and 10–30°C, respectively. The presence of long-range interstrand NOEs, as found in the crystal structure of the monomer, provides the evidence for conservation of the tertiary structure. Starting from structures calculated by the program CYANA, two different molecular dynamics simulated annealing refinement protocols were applied, either using the program AMBER in vacuum (AMBER_VC), or including a generalized Born solvent model (AMBER_GB). Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Wojciech Bocian contributed equally to this work.  相似文献   

17.
T C Pochapsky  X M Ye 《Biochemistry》1991,30(16):3850-3856
Putidaredoxin (Pdx), a 106-residue globular protein consisting of a single polypeptide chain and a [2Fe-2S] cluster, is the physiological reductant of P-450cam, which in turn catalyzes the monohydroxylation of camphor by molecular oxygen. No crystal structure has been obtained for Pdx or for any closely homologous protein. The application of two-dimensional 1H NMR methods to the problem of structure determination in Pdx is reported. A beta-sheet consisting of five short strands and one beta-turn has been identified from distinctive nuclear Overhauser effect patterns. All of the backbone resonances and a majority of the side-chain resonances corresponding to protons in the beta-sheet have been assigned sequence specifically. The sheet contains one parallel and three antiparallel strand orientations. Hydrophobic side chains in the beta-sheet face primarily toward the protein interior, except for a group of three valine side chains that are apparently solvent exposed. The potential significance of this "hydrophobic patch" in terms of biological activity is discussed. The folding topology, as determined by the constraints of the beta-sheet, is compared with that of other [2Fe-2S] proteins for which folding topologies are known.  相似文献   

18.
By use of isolated canine hepatocytes and insulin analogs prepared by trypsin-catalyzed semisynthesis, we have investigated the importance of the aromatic triplet PheB24-PheB25-TyrB26 of the COOH-terminal B-chain domain of insulin in directing the affinity of insulin-receptor interactions. Analysis of the receptor binding potencies of analogs bearing transpositions or replacements (by Tyr, D-Tyr or their corresponding 3,5-diiodo derivatives) in this region demonstrates a wide divergence in the acceptance both of configurational change (with [D-TyrB24,PheB26]insulin and [D-TyrB25,PheB26]insulin exhibiting 160 and 0.1% of the receptor binding potency of insulin, respectively) and of detailed side chain structure (with [TyrB24,PheB26]insulin and [TyrB25,PheB26]insulin exhibiting 2 and 80% of the receptor binding potency of insulin, respectively). Additional experiments addressed the solvent accessibilities of the 4 tyrosine residues of insulin and the insulin analogs at selected peptide concentrations by use of analytical radioiodination. Whereas two analogs ([TyrB25,PheB26]insulin and [D-TyrB24,PheB26]insulin) were found to undergo self aggregation, no strict correlation was found between the ability of an analog to aggregate and its potency for interaction with the insulin receptor. Related findings are discussed in terms of the interplay between side chain and main chain structure in the COOH-terminal domain of the insulin B-chain and the structural attributes of insulin that determine the affinity of insulin-receptor interactions.  相似文献   

19.
P L Weber  D E Wemmer  B R Reid 《Biochemistry》1985,24(17):4553-4562
The cro repressor protein from bacteriophage lambda has been studied in solution by two-dimensional nuclear magnetic resonance spectroscopy (2D NMR). Following the approach of Wüthrich and co-workers [Wüthrich, K., Wider, G., Wagner, G., & Braun, W. (1982) J. Mol. Biol. 155, 311-319], individual spin systems were identified by J-correlated spectroscopy (COSY) supplemented, where necessary, by relayed coherence transfer spectroscopy (RELAY). Nuclear Overhauser effect spectroscopy (NOESY) was used to obtain sequence-specific assignments. From the two-dimensional spectra, the peptide backbone resonances (NH and C alpha H) for 65 of the 66 amino acids were assigned, as well as most of the side chain resonances. The chemical shifts for the assigned protons are reported at 35 degrees C in 10 mM potassium phosphate, pH 6.8, and in 10 mM potassium phosphate, pH 4.6, 0.2 M KCl, and 0.1 mM EDTA. Small shifts were observed for some resonances upon addition of salt, but no major changes in the spectrum were seen, indicating that no global structural change occurs between these ionic strengths. NOE patterns characteristic of alpha-helices, beta-strands, and turns are seen in various regions of the primary sequence. From the location of these regions the secondary structure of cro in solution appears to be virtually identical with the crystal structure [Anderson, W. F., Ohlendorf, D. H., Takeda, Y., & Matthews, B. W. (1981) Nature (London) 290, 754-758]. Missing assignments include the Pro-59 resonances and the peripheral protons of the eight lysine, the three arginine, and three of the five isoleucine residues.  相似文献   

20.
Q X Hua  M A Weiss 《Biochemistry》1990,29(46):10545-10555
2D 1H NMR studies are presented of des-pentapeptide-insulin, an analogue of human insulin lacking the C-terminal five residues of the B chain. Removal of these residues, which are not required for function, is shown to reduce conformational broadening previously described in the spectrum of intact insulin [Weiss et al. (1989) Biochemistry 28, 9855-9873]. This difference presumably reflects more rapid internal motions in the fragment, which lead to more complete averaging of chemical shifts on the NMR time scale. Sequential 1H NMR assignment and preliminary structural analysis demonstrate retention in solution of the three alpha-helices observed in the crystal state and the relative orientation of the receptor-binding surfaces. These studies provide a foundation for determining the solution structure of insulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号