首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A survey of 123 species of fishes from southeastern Queensland during 1975 revealed in 47 species nine distinct larval types of ascaridoid nematodes: Anisakis Type I, Terranova Types I and II, Contracaecum Types I and II, and Thynnascaris Types I, II, III and IV. These larvae are described and figured.  相似文献   

2.
This study determines the occurrence and molecular identification of nematodes from blue mackerel Scomber australasicus Cuvier (Perciformes: Scombridae), an edible fish from Australian waters. A total of 150 fish were sourced from the New South Wales and Victorian coasts. Nematodes were initially classified morphologically as 10 morphotypes belonging to the families Anisakidae (Anisakis morphotypes I and II, Contracaecum morphotype II, Terranova morphotypes I and II), Raphidascarididae (Hysterothylacium morphotypes IV, VI, VIII, and XIV), and Capillariidae (Capillaria sp.), followed by molecular identification through sequencing of their internal transcribed spacer (ITS-1, 5.8S, ITS-2) region. Anisakis morphotype I was confirmed as A. pegreffii Campana-Rouget & Biocca, 1955 and A. berlandi Mattiucci, Cipriani, Webb, Paoletti, Marcer, Bellisario, Gibson & Nascetti, 2014. Anisakis morphotype II and Contracaecum morphotype II were confirmed as A. physeteris Baylis, 1923 and C. ogmorhini Johnston & Mawson, 1941, respectively. Terranova morphotypes I and II were identified as Pulchrascaris australis Shamsi, Barton & Zhu, 2020 and Euterranova pectinolabiata n. comb. (Shamsi, Barton & Zhu, 2019) Moravec & Justine, 2020, respectively. The specific identification of Hysterothylacium morphotypes IV, VI, and VIII was not possible as no comparable adult Hysterothylacium species sequences were available in GenBank, with the exception of morphotype XIV which was confirmed as H. persicum Shamsi, Ghadam, Suthar, Mousavi, Soltani & Mirzargar, 2016. Seven nematode morphotypes were identified for the first time in Australian blue mackerel. The outcomes of the study provide a basis for future research into the community structure, life cycles, and distribution of nematode species in Australian mackerel and to analyse and clarify their importance for public health.  相似文献   

3.
Execretory-secretory products were collected from supernatants of in vitro cultures of larval nematodes, Anisakis simplex (type I) and Terranova sp. (Hawaii type A). These materials were found to be more potent inhibitors of rodent lymphocyte blast transformation induced by concanavalin A and bacterial lipopolysaccaride than whole worm extracts of the same parasites. Inhibition of blast transformation was a result of cytostatic rather than toxic effects on proliferating lymphoid cells. The material(s) responsible for suppression are greater than 10,000 MW and are heat labile.  相似文献   

4.
Anisakis spp. (Nematoda: Anisakidae) parasitize a wide range of marine animals, mammals serving as the definitive host and different fish species as intermediate or paratenic hosts. In this study, 18 fish species were investigated for Anisakis infection. Katsuwonus pelamis, Euthynnus affinis, Caranx sp., and Auxis thazard were infected with high prevalence of Anisakis type I, while Cephalopholis cyanostigma and Rastrelliger kanagurta revealed low prevalence. The mean intensity of Anisakis larvae in K. pelamis and A. thazard was 49.7 and 5.6, respectively. A total of 73 Anisakis type I larvae collected from K. pelamis and A. thazard were all identified as Anisakis typica by PCR-RFLP analysis. Five specimens of Anisakis from K. pelamis and 15 specimens from A. thazard were sequenced using ITS1-5.8S-ITS2 region and 6 specimens from A. thazard and 4 specimens from K. pelamis were sequenced in mtDNA cox2 region. Alignments of the samples in the ITS region showed 2 patterns of nucleotides. The first pattern (genotype) of Anisakis from A. thazard had 100% similarity with adult A. typica from dolphins from USA, whereas the second genotype from A. thazard and K. pelamis had 4 base pairs different in ITS1 region with adult A. typica from USA. In the mtDNA cox2 regions, Anisakis type I specimens from A. thazard and K. pelamis showed similarity range from 94% to 99% with A. typica AB517571/DQ116427. The difference of 4 bp nucleotides in ITS1 regions and divergence into 2 subgroups in mtDNA cox2 indicating the existence of A. typica sibling species in the Makassar Strait.  相似文献   

5.
Agatsuma T. 1982. Electrophoretie studies on glucosephosphate isornerase and phosphoglucomutase in two types of Anisakis larvae. International Journal for Parasitology12: 35–39. Enzyme electrophoresis was carried out between the larval forms. Type I and II, of Anisakis using starch gel. In glucose-phosphate isomerase, considerable polymorphisms were found in each type. At least 5 alleles appear to occur at this enzyme locus in natural populations of both types. Out of 5 alleles, 3 were common to both types. No significant difference was found in their frequencies. However, each larval form can be easily distinguished by the electrophoretic mobility of phosphoglucomutase. It was concluded that enzyme electrophoresis is an alternative useful tool for the identification of larval forms of Anisakis.  相似文献   

6.
Anisakis simplex sensu stricto (s.s.), Anisakis pegreffii, Anisakis berlandi (=A. simplex sp. C), and Anisakis typica are the 4 major species of Anisakis type I larvae. In the Republic of Korea (Korea), A. pegreffii, A. berlandi, and A. typica larvae in fish hosts has seldom been documented. In this study, molecular analysis was performed on Anisakis larvae from the sea eels (Astroconger myriaster), the major source of human anisakiasis in Korea, collected from Tongyeong City, a southern coastal area of Korea. All 20 sea eels examined were infected with Anisakis type I larvae (160 larvae; 8 per fish). Their species were analyzed using PCR-RFLP patterns and nucleotide sequences of internal transcribed spacers (ITS1, 5.8 subunit gene, and ITS2) and mitochondrial cytochrome c oxidase 2 (cox2). Most (86.8%; 112/129) of the Anisakis type I larvae were A. pegreffii, and 7.8% (10/129) were A. typica. The remaining 5.4% (7/129) was not identified. Thus, A. pegreffii is the major species of anisakid larvae in sea eels of the southern coast of Korea.  相似文献   

7.
Electrophoretic surveys were conducted on individual larvae of four anisakine nematode genera: Anisakis, Phocanema, Contracaecum, and Sulcascaris. The larval worms were obtained from a variety of fish and molluscan hosts from widely dispersed geographic regions. Of several enzymes detected, constant and apparently species-specific electrophoretic patterns were obtained for alcohol dehydrogenase (ADH, alcohol:NAD oxidoreductase, EC 1.1.1.1) and malate dehydrogenase (MDH, l-malate: NAD oxidoreductase, EC 1.1.1.37). ADH, in all but Sulcascaris sp., possessed two isozymes, the slower of which was sensitive to temperature and inhibitors. Failure of preelectrophoretic treatment with NAD to cause interconversion of these isozymes suggests that they are products of separate genetic loci. Both isozymes were maximally active with isopropanol, sec-butanol, and amyl alcohol. Within a given species, ADH showed negligible variation (i.e., apparent genetic polymorphism) with respect to individual larvae, site of larvae in the host, or geographical origin of the host. MDH from Anisakis, Sulcascaris, and Phocanema spp. possessed one, two, and three bands of activity, respectively; MDH is highly thermostable in Anisakis sp. but not in the other species.  相似文献   

8.

Background

The aim of this study was to investigate the relationship between prior Anisakis infections and upper gastrointestinal bleeding (UGIB), and its interaction with non-steroidal anti-inflammatory drug (NSAID) intake.

Methods/Principal Findings

We conducted a hospital-based case-control study covering 215 UGIB cases and 650 controls. Odds ratios (ORs) with their confidence intervals (95% CIs) were calculated, as well as the ratio of the combined effects to the sum of the separate effects of Anisakis allergic sensitization and NSAIDs intake. Prior Anisakis infections were revealed by the presence of anti-Anisakis IgE antibodies specific to the recombinant Ani s 1 and Ani s 7 allergens used as the targets in indirect ELISA. Prior Anisakis infections (OR 1.74 [95% CI: 1.10 to 2.75]) and the intake of NSAIDs (OR 6.63 [95% CI: 4.21 to 10.43]) increased the risk of bleeding. Simultaneous NSAIDs intake and Anisakis allergic sensitization increased the risk of UGIB 14-fold (OR = 14.46 [95% CI: 6.08 to 34.40]). This interaction was additive, with a synergistic index of 3.01 (95% CI: 1.18–7.71).

Conclusions

Prior Anisakis infection is an independent risk factor for UGIB, and the joint effect with NSAIDs is 3 times higher than the sum of their individual effects.  相似文献   

9.
Consumption of raw or thermally inadequately treated fishery products represents a public health risk, with the possibility of propagation of live Anisakis larvae, the causative agent of the zoonotic disease anisakidosis, or anisakiasis. We investigated the population dynamics of Anisakis spp. in commercially important fish—anchovies (Anisakis), sardines (Sardina pilchardus), European hake (Merluccius merluccius), whiting (Merlangius merlangus), chub mackerel (Scomber japonicus), and Atlantic bluefin tuna (Thunnus thynnus)—captured in the main Adriatic Sea fishing ground. We observed a significant difference in the numbers of parasite larvae (1 to 32) in individual hosts and between species, with most fish showing high or very high Anisakis population indices. Phylogenetic analysis confirmed that commercial fish in the Adriatic Sea are parasitized by Anisakis pegreffii (95.95%) and Anisakis simplex sensu stricto (4.05%). The genetic structure of A. pegreffii in demersal, pelagic, and top predator hosts was unstructured, and the highest frequency of haplotype sharing (n = 10) was between demersal and pelagic fish.  相似文献   

10.
The red scorpionfish Scorpaena scrofa (Scorpaenidae) is a high commercial value marine fish species along the Mediterranean coasts. Anisakiasis is a fish–borne parasitic zoonoses caused by Anisakis larvae in consumers. To date, there are only a few epidemiological studies on the presence and molecular identification of Anisakis larvae infecting S. scrofa. A total of 272 S. scrofa captured from the Gulf of Izmir in the Turkish Aegean coasts (FAO 37.3.1) were examined for Anisakis larvae between March 2019 and March 2020. The prevalence, mean intensity and mean abundance of Anisakis larvae were 9.6% (95% CI 6.5–13.7%), 2.8 (95% CI 1.88–5.19), and 0.27 (95% CI 0.15–0.56), respectively. All Anisakis larvae were collected from the viscera and body cavity of S. scrofa. Anisakis pegreffii, A. typica, and A. ziphidarum were genetically identified by RFLP analysis of the ITS region. These species were also confirmed by cox2 sequence analysis. A weak positive and statistically significant correlation between the total length (ρS 0.204; p = 0.001) and total weight (ρS 0.200; p = 0.001) of S. scrofa and the number of Anisakis larvae was observed. This survey presents the first molecular detection of A. typica and A. ziphidarum in S. scrofa. Thus, this fish species is a new host for A. typica and A. ziphidarum. This is also the first report of the presence of A. ziphidarum in the Aegean Sea.  相似文献   

11.

Background

The main objective of the study was to determine the degree of sensitization to Anisakis spp. antigens in healthy coastal population of Dalmatia given the high thermally unprocessed fish intake rate present in this area, suggested as a significant risk factor for anisakiasis. We performed a monocenter, cross-sectional pilot study stratified by geographic area of residence, conducted at the County secondary healthcare provider Medicine-biochemical Laboratory in Split (Croatia), from November 2010 till December 2011, on 500 unpaid volunteer subjects undergoing routine blood analysis and belonging to the south coast of the Adriatic Sea.

Methodology/Principal Findings

We studied the IgE seroprevalence to Anisakis spp. Ani s l and Ani s 7 allergens by indirect ELISA in healthy subjects, which were selected at random in the region of Dalmatia (Southern Croatia), among islands, coastal urban and inland rural populations. In order to detect possible cross-reactivity to other human helminthes, serum samples were tested also for the presence of IgG antibodies to Ascaris lumbricoides and Toxocara canis. The overall and coastal Anisakis seroprevalences for the sampled population were 2% and 2.5%, respectively. The logistic univariate regression analysis confirmed that regarding anti-Anisakis IgE seroprevalence, raw fish intake, daily fish intake, homemade origin of fish dish and occupational contact (professional, artisanal or hobby contact with fishery or fish industry) were risk factors associated to Anisakis spp. sensitization, but neither of the variables was exclusive for a particular seropositive population. Also, a significant difference was observed between seropositive and seronegative subjects that had stated allergy or symptoms associated with allergy (atopic dermatitis, asthma or rhinitis) in their previous history.

Conclusions/Significance

Being the first in Croatia, our study underlines the necessity of incorporating Anisakis spp. allergens in routine hypersensitivity testing of coastal population.  相似文献   

12.
Anisakis is a parasitic nematode which infects fish and marine invertebrates, including crustaceans and molluscs. Ingestion of contaminated seafood can cause acute gastrointestinal diseases. Infection can be accompanied by severe allergic reactions such as urticaria, angioedema and anaphylaxis. Diagnosis of allergy due to Anisakis currently relies on the detection of serum IgE antibodies to allergenic proteins and a history of reactions upon exposure to fish. Anisakis proteins demonstrate considerable immunological cross-reactivity to proteins of related nematodes and other invertebrates such as crustaceans and house dust-mites. In contrast, very limited molecular associations with other parasite groups are observed, including trematodes and cestodes. This review outlines current knowledge on Anisakis as a food-borne parasite, with special focus on the underlying immunological mechanisms resulting in allergic host defence responses.  相似文献   

13.
Immunosuppression in sepsis reduces both αβ and γδ T cell subsets. Anisakis sp. is a parasitic nematode with a high prevalence in Spain. Previous contact with the parasite is related to a decrease in γδ T cells. Anti-Anisakis antibodies were measured and related to αβ and γδ T cells in 114 septic patients versus 97 healthy controls. Significant differences were seen with respect to the groups with severe sepsis and septic shock where lower anti-Anisakis levels were observed. A similar decrease appeared in the case of specific IgM with significant differences between the groups of control/uncomplicated sepsis versus severe sepsis and septic shock. These differences were also apparent in the case of specific IgA. The lowest IgE levels were detected in the septic shock group. Anti-Anisakis IgG levels significantly increased in septic shock groups compared with the controls. We observed positive correlations among anti-Anisakis IgA levels and all γδ T cell subsets. There were negative correlations among IgA levels and APACHE and SOFA indices. Greater contact with the parasite (IgG) was directly related with septic shock, inflammation and markers of sepsis severity. A lack of protection in the mucosa (IgA and γδ T cells) was associated with the disease severity.  相似文献   

14.
Parasites of the nematode genus Anisakis are associated with aquatic organisms. They can be found in a variety of marine hosts including whales, crustaceans, fish and cephalopods and are known to be the cause of the zoonotic disease anisakiasis, a painful inflammation of the gastro-intestinal tract caused by the accidental consumptions of infectious larvae raw or semi-raw fishery products. Since the demand on fish as dietary protein source and the export rates of seafood products in general is rapidly increasing worldwide, the knowledge about the distribution of potential foodborne human pathogens in seafood is of major significance for human health. Studies have provided evidence that a few Anisakis species can cause clinical symptoms in humans. The aim of our study was to interpolate the species range for every described Anisakis species on the basis of the existing occurrence data. We used sequence data of 373 Anisakis larvae from 30 different hosts worldwide and previously published molecular data (n = 584) from 53 field-specific publications to model the species range of Anisakis spp., using a interpolation method that combines aspects of the alpha hull interpolation algorithm as well as the conditional interpolation approach. The results of our approach strongly indicate the existence of species-specific distribution patterns of Anisakis spp. within different climate zones and oceans that are in principle congruent with those of their respective final hosts. Our results support preceding studies that propose anisakid nematodes as useful biological indicators for their final host distribution and abundance as they closely follow the trophic relationships among their successive hosts. The modeling might although be helpful for predicting the likelihood of infection in order to reduce the risk of anisakiasis cases in a given area.  相似文献   

15.

Background

Nematode secreted haemoglobins have unusually high affinity for oxygen and possess nitric oxide deoxygenase, and catalase activity thought to be important in protection against host immune responses to infection. In this study, we generated a monoclonal antibody (48Eg) against haemoglobin of the nematode Anisakis pegreffii, and aimed to characterize cross-reactivity of 4E8g against haemoglobins of different nematodes and its potential to mediate protective immunity against a murine hookworm infection.

Methodology/Principal Findings

Immunoprecipitation was used to isolate the 4E8g-binding antigen in Anisakis and Ascaris extracts, which were identified as haemoglobins by peptide mass fingerprinting and MS/MS. Immunological cross-reactivity was also demonstrated with haemoglobin of the rodent hookworm N. brasiliensis. Immunogenicity of nematode haemoglobin in mice and humans was tested by immunoblotting. Anisakis haemoglobin was recognized by IgG and IgE antibodies of Anisakis-infected mice, while Ascaris haemoglobin was recognized by IgG but not IgE antibodies in mouse and human sera. Sequencing of Anisakis haemoglobin revealed high similarity to haemoglobin of a related marine nematode, Psuedoterranova decipiens, which lacks the four –HKEE repeats of Ascaris haemoglobin important in octamer assembly. The localization of haemoglobin in the different parasites was examined by immunohistochemistry and associated with the excretory-secretary ducts in Anisakis, Ascaris and N. brasiliensis. Anisakis haemoglobin was strongly expressed in the L3 stage, unlike Ascaris haemoglobin, which is reportedly mainly expressed in adult worms. Passive immunization of mice with 4E8g prior to infection with N. brasiliensis enhanced protective Th2 immunity and led to a significant decrease in worm burdens.

Conclusion

The monoclonal antibody 4E8g targets haemoglobin in broadly equivalent anatomical locations in parasitic nematodes and enhances host immunity to a hookworm infection.  相似文献   

16.
Contracaecum spasskii Mozgovoi, 1950, collected from the great crested grebe Podiceps cristatus (Linnaeus) (Podicipediformes: Podicipedidae), is redescribed using both light and, for the first time, scanning electron microscopy. Contracaecum spasskii differs from its congeners by having marked transverse cuticular annulations, the length of the oesophagus and spicules, the ratio between the intestinal caecum and the ventricular appendix, the number and arrangement of male caudal papillae, and especially by the particular morphology of the lips and interlabia. Some previously unreported morphological features of C. spasskii are also revealed and others corrected. Contracaecum rudolphii Hartwich, 1964 (sensu lato) is also redescribed based on the specimens collected from the great cormorant Phalacrocorax carbo sinensis (Blumenbach) (Pelecaniformes: Phalacrocoracidae) from China. Based on the geographical perspective, the present Chinese material may represent the species C. rudolphii B.  相似文献   

17.
A parasite assemblage of Sebastes miniatus from northwestern Baja California, México, was composed of a total of 12 species: five ectoparasites (two monogeneans and three parasitic copepods) and seven endoparasites (two digeneans, one cestode, three nematodes, and one acanthocephala). Five of these parasites constituted new genera records to the genus Sebastes, and nine were new geographic records. The most abundant species were the endoparasites Parabothriocephalus sagitticeps, Hysterothylacium sp., and Anisakis sp., and the specific richness ranged from 1 to 8 parasite species per host. The most important parasite species in terms of prevalence were Microcotyle sebastis (93 %) and Anisakis sp. (92 %). The mean abundance of parasites found in S. miniatus showed significant variations over the year, with maximum values (31.7 individuals/host) in August, and minimum (0.39 individuals/host) in February. P. sagitticeps showed the highest mean intensity of infection (190.4 parasites/host), followed by Anisakis sp. (127.2 parasites/host) and Hysterothylacium sp. (46.6 parasites/host). The presence of larval stages of the nematodes Anisakis, Pseudoterranova, and Hysterothylacium is particularly important due to their high abundance and prevalence and because they may represent a human health risk (anisakiasis). Rockfishes (family Scorpaenidae) of the genus Sebastes constitute one of the most important groundfish resources in the American and Mexican northern Pacific Ocean, both for recreational and for the commercial fisheries of California and Baja California. These rockfish species makes up a substantial part of the Mexican cuisine.  相似文献   

18.
Anisakids use invertebrates as paratenic and/or intermediate hosts as a basic feature of larval transmission. The third-stage larva usually develops in invertebrates which are prey items of finfish paratenic hosts. Contracaecum larvae molt twice inside the egg and hatch as free third-stage larvae ensheathed in the second-stage larval cuticle. Copepods act as paratenic or obligatory hosts, usually ingesting these free L3 larvae, and fish act as intermediate/paratenic or metaparatenic hosts preying on infected copepods. Fish-eating birds acquire L3 larvae by ingesting infected fish where they develop into the fourth-stage larvae and adults. Objectives of this work were to establish the specific correspondence between Contracaecum pelagicum L3 larvae parasitizing the anchovy Engraulis anchoita, and the adults parasitizing the Magellanic penguin Spheniscus magellanicus and the Imperial shag Phalacrocorax atriceps through the use of molecular markers; and, to evaluate the anisakid L3 larval recruitment and infection caused by ingestion of anchovy by S. magellanicus. Sixteen specimens of Contracaecum L3 larvae were analyzed from E. anchoita from Bahía Engaño, Chubut, eight adult nematodes from S. magellanicus and six adult specimens from P. atriceps both from the Valdés Peninsula, Chubut. All nematodes were sequenced for three genes: mitochondrial cytochrome oxidase 2 (mtDNA cox2), mitochondrial ribosomal RNA (rrnS), and the internal transcribed spacers (ITS-1 and ITS-2) of the nuclear ribosomal DNA region. Phylogenetic analyses were performed by using Maximum Parsimony (MP) analysis by PAUP. In addition, studies under SEM and LM were carried out on L3 larvae. All L3 individuals from E. anchoita, adults from S. magellanicus, and P. atriceps clustered in the same clade, well supported in the MP tree inferred from the mtDNA cox2, and rrnS gene sequences analyses. Further, the sequence alignments of L3 larvae and adults of C. pelagicum here obtained at the ITS-1 and ITS-2 regions of the rDNA matched the sequences of C. pelagicum previously deposited by us in GenBank. Nematode recruitment (Ro) was equal to 33.07 (7.20–91.14) L3 larvae for C. pelagicum in each penguin's meal of anchovy. The MP tree topologies obtained from mtDNA cox2 and rrnS genes demonstrated that specimens of Contracaecum L3 larvae from E. anchoita and C. pelagicum from S. magellanicus as well as from P. atriceps constitute a unique clade, well-distinct and supported from all the others formed by the Contracaecum spp. sequenced so far for these genes. Molecular markers are considered to be an effective tool to elucidate larval transmission. The Contracaecum L3 larval recruitment value showed that many worms fail to establish in the bird digestive tract, probably because they are below a critical size. Further work is needed to elucidate other factors (e.g., physiological, immunological) that control nematode populations in the penguin digestive tract.  相似文献   

19.
Anisakiasis, a human infection of Anisakis L3 larvae, is one of the common foodborne parasitic diseases in Korea. Studies on the identification of anisakid larvae have been performed in the country, but most of them have been focused on morphological identification of the larvae. In this study, we analyzed the molecular characteristics of 174 Anisakis type I larvae collected from 10 species of fish caught in 3 different sea areas in Korea. PCR-RFLP and sequence analyses of rDNA ITS and mtDNA cox1 revealed that the larvae showed interesting distribution patterns depending on fish species and geographical locations. Anisakis pegreffii was predominant in fish from the Yellow Sea and the South Sea. Meanwhile, both A. pegreffii and A. simplex sensu stricto (A. simplex s.str.) larvae were identified in fish from the East Sea, depending on fish species infected. These results suggested that A. pegreffii was primarily distributed in a diverse species of fish in 3 sea areas around Korea, but A. simplex s.str. was dominantly identified in Oncorhynchus spp. in the East Sea.  相似文献   

20.
The present study was performed to report 15 anisakiasis cases in Korea and to review the Korean cases reported in the literature. Total 32 Anisakis type I larvae were detected in the stomach of 15 patients by the endoscopy. Single worm was detected from 12 cases, and even 9 larvae were found from 2 cases. Epigastric pain was most commonly manifested in almost all cases, and hemoptysis and hematemesis were seen in 1 case each. Symptom manifestations began at 10-12 hr after eating fish in 73.3% cases. Endoscopy was performed 1-2 days after the symptom onset in most cases. The common conger, Conger myriaster, was the probable infection source in 7 cases. In the review of Korean anisakiasis cases, thus far, total 645 cases have been reported in 64 articles. Anisakis type I larva was the most frequently detected (81.3%). The favorable infection site of larvae was the stomach (82.4%). The common conger was the most probable source of human infections (38.6%). Among the total 404 cases which revealed the age and sex of patients, 185 (45.8%) were males, and the remaining 219 (54.2%) were female patients. The age prevalence was the highest in forties (34.7%). The seasonal prevalence was highest in winter (38.8%). By the present study, 15 cases of gastric anisakiasis are added as Korean cases, and some epidemiological characteristics of Korean anisakiasis were clarified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号