首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The progression of oocyte meiosis is accompanied by major changes in the ooplasm that play a key role in the completion of a coordinate nuclear and cytoplasmic maturation. We review evidence from the literature and present data obtained in our laboratory on different aspects of pig oocyte cytoplasm compartmentalization during maturation and early embryo development. In particular, we will discuss the changes in adenosine triphosphate (ATP) concentration and distribution taking place during the maturation process and their possible significance for oocyte developmental competence. We describe two important aspects of cytoplasmic streaming: mitochondrial distribution patterns in oocytes and early embryos and the complex rearrangements of cytoplasmic microtubule networks, while discussing their possible correlations with ooplasm compartmentalization. Recent evidence indicates that the cytoskeleton is used to shuttle not only organelles but also mRNAs to specific sites within the oocyte cytoplasm. Localization is driven by specific molecular motors belonging to the kinesin superfamily and requires the involvement of the RNA targeting molecule Staufen. We present recent experimental evidence, obtained in our laboratory, on the pig orthologues for kinesin KIF5B and Staufen, describe their expression patterns and discuss their possible role in oocyte maturation.  相似文献   

2.
Previous studies have indicated that pituitary-initiated oocyte maturation in the amphibian is mediated by steroidogenesis in the somatic portion of the follicle. This study compares the ability of (1) oocytes surrounded by a single layer of follicle cells, (2) denuded oocytes, and (3) isolated follicle cells to metabolize Δ5-pregnenolone, the common precursor of the steroids. Use of radiolabeled compounds demonstrates that the conversion of Δ5-pregnenolone to progesterone is confined to the follicle cells, while further reduction of progesterone takes place in the oocyte. The follicle cells also convert Δ5-pregnenolone to a form more potent in inducing meiotic maturation. Thus, the behavior of follicle cells in isolation is consistent with the suggested site of pituitary action leading to meiotic maturation as proposed by an earlier theory.  相似文献   

3.
4.
The present experiment was to investigate the effect of gonadotropins (LH and hCG), steroids (estradiol and progesterone) and culture media (TCM 199, Ham-F-12, BMOC-3 and modified KRB) on in vitro maturation of cumulus-enclosed bovine oocytes. Oocytes isolated from follicles of 相似文献   

5.
Bovine cumulus oocyte complexes (COCs) as used for in vitro maturation and fertilization can be classified into different categories by light microscopical inspection. We have distinguished four categories based on compactness and transparency of the cumulus investment and homogeneity and transparency of the ooplasm. The four categories were studied for their morphological characteristics at the ultrastructural level and for their developing capacity in an in vitro maturation system. In categories 1 and 2 oocytes, organelles were evenly distributed. In categories 3 and 4, oocytes organelles were clustered and the distribution of the organelles mimicked the characteristics of oocytes during final maturation. Cumulus cell process endings penetrated the cortex of the oocyte or were located superficial to the cortex of the oocyte. In category 1 oocytes, most of the process endings penetrated the cortex. In category 4 oocytes, most of the process endings did not penetrate. In categories 2 and 3 oocytes, both forms of process endings did occur. After in vitro maturation, only category 4 oocytes showed a decreased developing capacity. Categories 1–3 oocytes showed equal developing capacity in an in vitro maturation system.  相似文献   

6.
The involvement of steroid-cell surface interactions, in the induction of oocyte maturation, was investigated. A simple in vitro method was developed for the application of steroids or other substances to isolated portions of the surface of individual amphibian ovarian follicles or oocytes. The technique involved placing follicles in conical tubes between two reservoirs containing culture media. With the use of dye or radioactive tracer studies, the extent of exchange between reservoirs could be monitored and the proportion of the surface treated could be calculated.
Follicular oocytes remained viable and underwent nuclear and cytoplasmic maturation while maintained in conical tubes after a short exposure to progesterone over their total surface. Restriction of the percentage of the oocyte surface exposed to progesterone markedly reduced the incidence of meiotic maturation. Reduced responsiveness to locally applied progesterone occurred even in the presence of elevated steroid concentrations. The results suggest that the amount of follicle surface exposed to steroid is an important determinant in initiation of nuclear-cytoplasmic interactions associated with the meiotic maturation process. The procedures and results described should provide a new approach to investigating regional differences in oocyte and follicle surfaces and to studying their differentiation.  相似文献   

7.
Involvement of steroid hormones on in vitro maturation of pig oocytes   总被引:7,自引:0,他引:7  
Dode MA  Graves C 《Theriogenology》2002,57(2):811-821
The purpose of this study was to determine if the addition of steroid hormones into the culture medium could influence the in vitro maturation of pig oocytes. The cumulus-oocyte complexes (COCs). collected from follicles of 2-5 mm diameter, were matured in steroid-free medium supplemented with various concentrations of estradiol-17beta (0-3000 ng/ml), progesterone (0-5000 ng/ml) and testosterone (0-300 ng/ml). The COCs were cultured for 42 h, then fertilized in vitro. We analyzed nuclear and cytoplasmic maturation with lacmoid stain 20 h after in vitro insemination. We observed no significant effect (P > 0.05) on the percentage of oocytes completing nuclear or cytoplasmic maturation or the number of sperm penetrating each oocyte for any concentration of progesterone, estradiol-17beta or testosterone. Similarly, adding a combination of those hormones to the medium did not significantly (P > 0.05) affect any of the criteria. In order to determine if there was a possible secretion of steroids during maturation, we added COCs, denuded oocytes and stripped cumulus cells to drops of a steroid-free medium and cultured them for 42 h, after which we analyzed the medium, before and after culture, for the presence of progesterone, estradiol-17beta and testosterone by radioimmunoassay (RIA) analysis. COCs, as well as cumulus cells alone, secreted similar amounts of estradiol (43.3 and 37.5 pg/ml, respectively) and progesterone (4.24 and 4.79 ng/ml, respectively) into the maturation medium. A small amount of estradiol (28.8 pg/ml) was also detected when oocytes were cultured alone. These results indicate that no steroids need to be added to the maturation medium of pig oocytes and that the COCs secrete steroids during maturation. It is possible that the amounts produced by the COCs fulfill any requirement for steroids if these steroids are required for either nuclear or cytoplasmic oocyte maturation.  相似文献   

8.
Synopsis The ovaries of four pre-spawning white sturgeon females were sampled and their oocytes incubated in the presence of eight gonadotropin preparations, 21 steroids, a prostaglandin and a catacholamine. Among the gonadotropin preparations, acetone dried pituitary gland powder from white sturgeon, common carp and chum salmon (in decreasing order of potency) were capable of inducing oocyte maturation (germinal vesicle breakdown — GVBD), while human chorionic gonadotropin, pregnant mare's serum gonadotropin, equine luteinizing hormone, bullfrog gonadotropin, and a stellate sturgeon pituitary chromatographic fraction capable of inducing testosterone production in white sturgeon testicular tissue failed to elicit any oocyte maturation response. The progesterone derivatives were the most potent steroid inducers of GVBD, followed closely by several corticosteroids. In vitro incubation of white sturgeon oocytes, in the presence of a suitable steroid (progesterone), can be used as a diagnostic tool in screening out unresponsive females for induced spawning work. The two remaining compounds, prostaglandin F2a and epinephrine, failed to cause ovulation in progesterone-matured white sturgeon oocytes.  相似文献   

9.
The developmental stages of female germ cells were analysed in a wild population of the protogynous teleost Epinephelus marginatus (Lowe, 1834). 321 wild dusky grouper females were collected in the South Mediterranean Sea during the spawning season and their ovaries analysed using histological and histochemical techniques. Oocyte morphology, nucleus-cytoplasm ratio (N/C) range, location and movements of cytoplasmic inclusions during primary growth, vitellogenesis and final oocyte maturation were described. The distribution of proteins, lipids and carbohydrates through oocyte development was also investigated in 50 females. Lipid vesicles appeared firstly in the mid ooplasm of oocytes larger than 130 microm, at the beginning of the secondary growth phase. Immediately afterwards, small carbohydrate granules (PAS and Alcian blue positive) appeared before the occurrence of the first yolk granules. Tyrosine-enriched proteins were especially evidenced in the zona radiata interna of late vitellogenic oocytes. Specific lectin binding patterns reflected characteristic differences in the content and distribution of specific sugar moieties expressed in the oocytes during vitellogenesis and final maturation. At the end of vitellogenesis and during final maturation, follicular cells, zona radiata, and cortical alveoli were characterised by a strong increase of specific binding for WGA.  相似文献   

10.
Vasoactive intestinal peptide (VIP) is present in the rat ovary and has been shown to stimulate cyclic adenosine 3',5'-monophosphate (cAMP) and progesterone production in cultured rat granulosa cells. In the present study, VIP-stimulated cAMP production has been studied in relation to steroid accumulation and oocyte maturation in isolated preovulatory rat follicles. VIP stimulated resumption of meiosis (oocyte maturation) in up to 60% of the follicle-enclosed oocytes after 6 h at 1 microM (control, 1.8%; luteinizing hormone 99%). The effect was time- and dose-dependent up to 6 h and was seen with both natural and synthetic VIP. VIP also stimulated the accumulation of steroids (estrogen, 2.3-fold; testosterone, 2.0-fold; and progesterone, 1.6-fold increase after 6 h of incubation) and lactate (2.6-fold) by the follicles. VIP-increased tissue levels of cAMP in the follicle were dose- and time-dependent. This effect was potentiated by a phosphodiesterase inhibitor. When isolated oocyte-cumulus complexes were studied, VIP caused a transient inhibition of spontaneous oocyte maturation, and demonstrated no effect on denuded oocytes. These results extend earlier preliminary observations on the ability of VIP to induce meiotic maturation of follicle-enclosed oocytes. Our results also show that VIP can stimulate steroid and lactate accumulation in the isolated follicles. The pattern of steroids produced suggests an effect both on the theca- and granulosa cells. We also show that VIP can delay spontaneous oocyte maturation. These effects appeared, at least partially, to be mediated by cAMP.  相似文献   

11.
Maturation of the mammalian oocyte is characterized in part by dissolution of the nuclear envelope, or germinal vesicle breakdown (GVB). By fluorescence microscopy after vital uptake of acridine orange (AO), redistribution and perinuclear accumulation of organelles corresponding to lysosomes occur before GVB in rat oocytes undergoing meiotic maturation in vitro. In follicle-enclosed oocytes explanted during the preovulatory gonadotropin surge (GS) and individually cultured as such in chemically defined medium at approximately 22 degrees C, lysosomes aggregated into disperse clusters after 30 min; by 60 min, perinuclear concentration of lysosomes and their essential disappearance from the cortical ooplasm were observed. GVB occurred within 120 min. In contrast, follicle-enclosed oocytes explanted before the GS displayed a generally homogeneous distribution of lysosomes and intact GV for up to 5 h in culture. In oocytes aspirated from follicles before the GS, partially denuded of granulosa cells, and cultivated without added hormone, most lysosomes concentrated around the GV within 60 min, with GVB occurring generally by 120 min. Luteinizing hormone (LH) added in vitro to the isolated preparation at 3 or 30 x 10(-8) M sharply accelerated these events. The effects of LH, not seen with 1.5 x 10(-8) M hormone, were blocked by anti-LH IgG. Up to 60 x 10(-8) M follicle-stimulating hormone or 80 x 10(-8) M prolactin were ineffective in accelerating lysosome redistribution or GVB. After GVB, lysosomes became once again uniformly dispersed and unresponsive, even to 60 x 10(-8) M added LH, a finding consistent with tachyphylaxis of target cells by independent criteria. The present data, all statistically significant at P less than 0.05, demonstrate that mobilization of lysosomes before GVB is a specific response to factors that promote resumption of meiotic maturation of rat oocytes.  相似文献   

12.
Progesterone-induced maturation of Xenopus oocytes is a well known example of nongenomic signaling by steroids; however, little is known about the early signaling events involved in this process. Previous work has suggested that G proteins and G protein-coupled receptors may be involved in progesterone-mediated oocyte maturation as well as in other nongenomic steroid-induced signaling events. To investigate the role of G proteins in nongenomic signaling by progesterone, the effects of modulating Galpha and Gbetagamma levels in Xenopus oocytes on progesterone-induced signaling and maturation were examined. Our results demonstrate that Gbetagamma subunits, rather than Galpha, are the principal mediators of progesterone action in this system. We show that overexpression of Gbetagamma inhibits both progesterone-induced maturation and activation of the MAPK pathway, whereas sequestration of endogenous Gbetagamma subunits enhances progesterone-mediated signaling and maturation. These data are consistent with a model whereby endogenous free Xenopus Gbetagamma subunits constitutively inhibit oocyte maturation. Progesterone may induce maturation by antagonizing this inhibition and therefore allowing cell cycle progression to occur. These studies offer new insight into the early signaling events mediated by progesterone and may be useful in characterizing and identifying the membrane progesterone receptor in oocytes.  相似文献   

13.
The objectives were to describe the ultrastructure of equine oocytes aspirated from small and preovulatory follicles, and to relate the ultrastructural features to follicle size and follicular fluid steroid concentrations. Mares were examined every second day by transrectal ultrasonography, and follicles measuring ≤30 mm were aspirated (in vivo) using a 20-cm-long 12-gauge needle through the flank. Following slaughter, both large and small follicles were aspirated (in vitro) from six mares. The oocytes were isolated under a stereomicroscope and processed for transmission electron microscopy, and the follicular fluid was assayed for progesterone (P4) amd estradiol-17β (E2). A total of 29 oocytes (32% recovery rate) were aspirated in vivo, and 15 oocytes were recovered in vitro. According to the stage of nuclear maturation, the oocytes could be divided into the following six categories: 1) the central oocyte nucleus (CON) stage, 2) the peripheral spherical oocyte nucleus (PON-I) stage, 3) the peripheral flattened oocyte nucleus (PON-II) stage, 4) the oocyte nucleus breakdown (ONBD) stage, 5) the metaphase I (M-I) stage, and 6) the metaphase II (M-II) stage. The maturation of the preovulatory follicle was reflected by alterations in the follicular fluid concentrations of steroid hormones. E2 was high in all preovulatory follicles, whereas P4 concentration exhibited a 10-fold increase during follicle maturation, particularly associated with the progression from M-I-to M-II-stage oocytes. The nuclear oocyte maturation included flattening of the spherical oocyte nucleus, followed by increasing undulation of the nuclear envelope, formation of the metaphase plate of the first meiotic division, and, finally, the extrusion of the first polar body and the subsequent formation of the metaphase plate of the second meiotic division. The cytoplasmic oocyte maturation changes comprised breakdown of the intermediate junctions between the cumulus cell projections and the oolemma, enlargement of the perivitelline space, the formation and arrangement of a large number of cortical granules immediately beneath the oolemma, the rearrangement of mitochondria from a predominantly peripheral distribution to a more central or semilunar domain, and the rearrangement of membrane-bound vesicles and lipid droplets from an even distribution to an often semilunar domain, giving the ooplasm a polarized appearance. It is concluded that the final equine oocyte maturation includes a series of well-defined nuclear and cytoplasmic changes that are paralleled by an increase in P4 concentration in the follicular fluid, whereas E2 concentration remains constantly high. © 1995 wiley-Liss, Inc.  相似文献   

14.
Treatment of Xenopus laevis oocytes with cholesterol-depleting methyl-β-cyclodextrin (MeβCD) stimulates phosphorylation of mitogen-activated protein kinase (MAPK) and oocyte maturation, as reported previously [Sadler, S.E., Jacobs, N.D., 2004. Stimulation of Xenopus laevis oocyte maturation by methyl-β-cyclodextrin. Biol. Reprod. 70, 1685-1692.]. Here we report that treatment of oocytes with MeβCD increased levels of immunodetectable 39-kDa mos protein. The protein synthesis inhibitor, cycloheximide, blocked the appearance of Mos, blocked MeβCD-stimulated phosphorylation of MAPK, and inhibited MeβCD-induced oocyte maturation. These observations suggest that MeβCD activates the progesterone-signaling pathway. Chemical inhibition of steroid synthesis and mechanical removal of follicle cells were used to verify that MeβCD acts at the level of the oocyte and does not require production of steroid by surrounding follicle cells. Cortical Gαs is contained in low-density membrane; and treatment of oocytes with progesterone or MeβCD reduced immunodetectable levels of Gαs protein in cortices and increased internal levels of 45-kDa Gαs in cortical-free extracts. Dose-dependent increases in internal Gαs after treatment of oocytes with progesterone correlated with the steroid-induced maturation response, and the increase in internal Gαs after hormone treatment was comparable to the decrease in cortical Gαs. These results are consistent with a model in which release of Gαs from the plasma membrane is involved in activation of the progesterone-signaling pathway that leads to amphibian oocyte maturation.  相似文献   

15.
FINE STRUCTURE OF LOACH OOCYTES DURING MATURATION IN VITRO   总被引:3,自引:0,他引:3  
The morphological changes during in vitro maturation of Misgurnus anguillicaudatus oocyte are described. The process of oocyte maturation can be divided into three provisional stages based on morphological events. Fully-grown, immature oocytes are opaque yellowish-white. The morphological characteristics of their ooplasm are the existence of annulate lamellae, a mass of long mitochondria and an electron dense layer beneath the vitelline surface. Three hr after a 1 hr exposure to corticosterone, these structures disappear and the cortical ooplasm becomes semi-transparent. In this stage of the maturation process (Stage I), the germinal vesicle, without a nucleolus, moves toward the animal pole, and scattered cytoplasmic inclusions approach the vitelline surface. Six hr after exposure to the hormone (Stage II), the whole ooplasm becomes semi-transparent and large yolk platelets are seen in the animal pole region. Tubular endoplasmic reticula develop throughout the ooplasm and some cortical alveoli (CA) become aligned beneath the vitelline surface. Nine hr after exposure to the hormone (Stage III), the oocyte chorion separates from the follicle cells. Most CA align beneath the vitelline surface and cytoplasm accumulates in the cortical region of the animal hemisphere.  相似文献   

16.
The response of oocytes within isolated follicles (800-950 micron in diameter) to various steroids was examined with the teleost fish, Oryzias latipes. Continuous exposure of oocytes, which were removed from ovarian investments 17 hours before predicted germinal vesicle breakdown (GVBD), to C19- or C21-steroids brought about maturation in vitro but never triggered ovulation. The steroids effective in inducing maturation have in common a C=0 (or alpha-OH) group at 3C and a beta-OH group at 17C in the C19-steroids, and a C=O (or beta-OH) group at 3C and a C=O (or alpha-OH) group at 20C in the C21-steroids, in addition to an delta4- or delta5-unsaturated for 5alpha-saturated configuration. The orientation of the hydrogen at 5C seems to be critical in determining the ability of a particular steroid to stimulate oocyte maturation. Maturation of oocytes in the ovaries of hypophysectomized females was induced by administering progesterone, but the mature oocytes did not subsequently undergo ovulation. Thus the steroid hormone is capable of inducing oocyte maturation but apparently does not participate directly in the ovulation of Oryzias latipes oocytes.  相似文献   

17.
Oocytes of Rana pipiens exposed to exogenous progesterone in order to induce maturation have been observed to extensively metabolize this hormone. When progesterone was injected directly into the oocytes, they did not mature, but similar metabolism of progesterone occurred. The metabolites have been tentatively identified as the 5α-reduced derivatives, 5α-pregnanedione, 5α-pregnan-20α-ol-3-one, and 5α-pregnan-3β, 20α-diol, and the pathway of conversion has been examined. Samples of these steroids obtained from commercial sources and those extracted from progesterone-treated oocytes were effective in inducing maturation when added to the medium. Evidence is presented which suggests that steroid metabolism is not a prerequisite for maturation and that the metabolites like progesterone must interact with the oocyte surface to be effective.  相似文献   

18.
The hypothesis that cumulus cells inhibit oocyte maturation by a cAMP-dependent process was tested (R. M. Schultz, R. Montgomery, P. F. Ward-Bailey, and J. J. Eppig (1983). Dev. Biol.95, 294–304.). Treatment of isolated cumulus cell-oocyte complexes with follicle-stimulating hormone (FSH) resulted in a dose-dependent increase in both cumulus cell cAMP levels and in the extent of inhibition of germinal vesicle breakdown (GVBD), the first morphological manifestation of oocyte maturation. Furthermore, it was found that concentrations of a membrane-permeable analog of cAMP, dibutyryl cAMP (dbcAMP), that were below those required for complete meiotic inhibition had a greater inhibitory effect on cumulus cell-enclosed oocytes than on denuded oocytes. Cumulus cell-enclosed and denuded oocytes matured at the same time in the absence of dbcAMP. Ablation of the gap junctions that couple cumulus cells to the oocyte abolished the maturation-inhibitory action of cumulus cells that was promoted either by FSH or low concentrations of dbcAMP. These results are consistent with the hypothesis that inhibition of oocyte maturation is mediated by a factor of granulosa/cumulus cell origin, other than cAMP, which requires cAMP for its activity and/or generation, and an intact intercellular coupling pathway between cumulus cells and the oocyte. A variety of steroid hormones potentiated the FSH-induced inhibition of maturation in cumulus cell-enclosed oocytes. In addition, steroid hormones inhibited maturation in denuded oocytes, but only when oocyte cAMP levels were elevated by cAMP analogs or forskolin. Steroids alone did not inhibit maturation of either cumulus cell-enclosed or denuded oocytes. Moreover, the steroids alone or in combination with FSH did not affect metabolic coupling between the cumulus cells and oocytes, nor did testosterone affect the forskolin-induced level of cAMP in denuded oocytes. Therefore, it is proposed that the oocyte is a site for the synergistic activity of steroid hormones with a cAMP-dependent process in inhibiting maturation. Results of these studies are discussed in terms of the roles of intercellular communication, cAMP, a putative maturation-inhibiting factor, and steroid hormones in the inhibition of maturation of mouse oocytes.  相似文献   

19.
Final oocyte maturation (FOM) is a process involving a complex set of genetical, biochemical, and morphological mechanisms. FOM involves the shift of a post-vitellogenic follicle to a pre-ovulated oocyte, which is necessary for fertilization by spermatozoan to occur. This process is regulated by a maturation-inducing steroid (MIS) at the follicular level. In other species of scienids fish the MIS, a hydroxilated derivatives of progestagen 17, 20beta, 21-trihydroxy-4-pregnen-3-one (20beta-S), was identified. Although Micropogonias furnieri is the second fishery resource of Uruguay, basic knowledge about its endocrine process is very scarce. The aim of this work was to investigate what steroids are synthesized in vitro by the oocyte follicle of M. furnieri during the maturation process. Fragments of ovary (1 g) in three stages: post-vitellogenic (PV), maturing (Mtg), and mature (M) were incubated with 1 microg x g(-1) of tritiated progesterone (P) at 30, 60, and 180 min. After extraction with ethanol and dichloromethane, steroid metabolites were purified by TLC and rpHPLC. Two progesterone derivatives with identical chromatographic properties of 20beta-S and 17,20beta-dihydroxy-4-pregnen-3-one (17,20beta-P) were purified. In other Teleost fish these steroids are biologically active as MIS. The 17,20beta-P was clearly detected in Mtg and M stages and confirmed by enzymatic oxidation with enzyme 20beta-HSD. The 20beta-S was strongly detected in all Mtg oocytes. The results do not corroborate 20beta-S as a major hormone synthesized in the ovary in FOM as occurs in other scienid fish. A differential steroid synthesis in the advanced oocyte stages suggests that the 20beta-S is acting as a MIS in M. furnieri.  相似文献   

20.
Progesterone induces the resumption of meiotic maturation of fully grown oocytes of Rana pipiens both in vivo and in vitro. The nature of the interaction of progesterone with the oocyte was investigated using a technique which allowed the application of steroid to a portion of the oocyte surface. Uptake of [3H]progesterone from the incubation media with time and with varying concentrations of steroid was approximately proportional to the surface area exposed. After 1.5 or 24 hr of continuous exposure of a portion of the oocyte surface to [3H]progesterone, greater than 90% of the radioactivity was associated with the hemisphere exposed. Restriction of the portion of oocyte surface exposed reduced the biological potency of progesterone in the induction of maturation as assessed by germinal vesicle breakdown. Decrease in hormone effectiveness was not due to direct physical effects of the technique. Removal of the surface restriction resulted in an increase in biological activity of the steroid; this change in steroid potency was correlated with an increase in steroid distribution over the cell. Oocytes continuously exposed over a restricted part of their surface to high levels of progesterone (10 μg/ml) matured to a limited extent. After 24 hr of incubation, 55% of the oocytes exposed to 10 μg/ml of progesterone over the animal pole matured as compared to 0% of those oocytes exposed over the vegetal pole. Using [3H]progesterone, no difference was detected in the amount of steroid taken up or retained by the two polar regions. These investigations suggest that the amount of progesterone required to induce maturation is related to its distribution over the oocyte and that the animal and vegetal hemispheres differ in their ability to respond to progesterone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号