首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Calmodulin (CaM) functions depend on interactions with CaM‐binding proteins, regulated by . Induced structural changes influence the affinity, kinetics, and specificities of the interactions. The dynamics of CaM interactions with neurogranin (Ng) and the CaM‐binding region of /calmodulin‐dependent kinase II (CaMKII290−309) have been studied using biophysical methods. These proteins have opposite dependencies for CaM binding. Surface plasmon resonance biosensor analysis confirmed that and CaM interact very rapidly, and with moderate affinity ( ). Calmodulin‐CaMKII290−309 interactions were only detected in the presence of , exhibiting fast kinetics and nanomolar affinity ( ). The CaM–Ng interaction had higher affinity under ‐depleted ( and k −1 = 1.6 × 10−1s−1) than ‐saturated conditions ( ). The IQ motif of Ng (Ng27−50) had similar affinity for CaM as Ng under ‐saturated conditions ( ), but no interaction was seen under ‐depleted conditions. Microscale thermophoresis using fluorescently labeled CaM confirmed the surface plasmon resonance results qualitatively, but estimated lower affinities for the Ng ( ) and CaMKII290−309( ) interactions. Although CaMKII290−309 showed expected interaction characteristics, they may be different for full‐length CaMKII. The data for full‐length Ng, but not Ng27−50, agree with the current model on Ng regulation of /CaM signaling.  相似文献   

2.
The fixation of new deleterious mutations is analyzed for a randomly mating population of constant size with no environmental or demographic stochasticity. Mildly deleterious mutations are far more important in causing loss of fitness and eventual extinction than are lethal and semilethal mutations in populations with effective sizes, Ne, larger than a few individuals. If all mildly deleterious mutations have the same selection coefficient, s against heterozygotes and 2s against homozygotes, the mean time to extinction, , is asymptotically proportional to for 4Nes > 1. Nearly neutral mutations pose the greatest risk of extinction for stable populations, because the magnitude of selection coefficient that minimizes is about ? = 0.4/Ne. The influence of variance in selection coefficients among mutations is analyzed assuming a gamma distribution of s, with mean and variance . The mean time to extinction increases with variance in selection coefficients if is near ?, but can decrease greatly if is much larger than ?. For a given coefficient of variation of , the mean time to extinction is asymptotically proportional to for . When s is exponentially distributed, (c = 1) is asymptotically proportional to . These results in conjunction with data on the rate and magnitude of mildly deleterious mutations in Drosophila melanogaster indicate that even moderately large populations, with effective sizes on the order of Ne = 103, may incur a substantial risk of extinction from the fixation of new mutations.  相似文献   

3.
Yen‐Tsung Huang 《Biometrics》2019,75(4):1191-1204
Mediation effects of multiple mediators are determined by two associations: one between an exposure and mediators (‐) and the other between the mediators and an outcome conditional on the exposure (‐). The test for mediation effects is conducted under a composite null hypothesis, that is, either one of the ‐ and ‐ associations is zero or both are zeros. Without accounting for the composite null, the type 1 error rate within a study containing a large number of multimediator tests may be much less than the expected. We propose a novel test to address the issue. For each mediation test , , we examine the ‐ and ‐ associations using two separate variance component tests. Assuming a zero‐mean working distribution with a common variance for the element‐wise ‐ (and ‐) associations, score tests for the variance components are constructed. We transform the test statistics into two normally distributed statistics under the null. Using a recently developed result, we conduct hypothesis tests accounting for the composite null hypothesis by adjusting for the variances of the normally distributed statistics for the ‐ and ‐ associations. Advantages of the proposed test over other methods are illustrated in simulation studies and a data application where we analyze lung cancer data from The Cancer Genome Atlas to investigate the smoking effect on gene expression through DNA methylation in 15 114 genes.  相似文献   

4.
In studies on internal CO2 transport, average xylem sap pH (pHx) is one of the factors used for calculation of the concentration of dissolved inorganic carbon in the xylem sap ([]). Lack of detailed pHx measurements at high temporal resolution could be a potential source of error when evaluating [] dynamics. In this experiment, we performed continuous measurements of CO2 concentration ([CO2]) and stem temperature (Tstem), complemented with pHx measurements at 30‐min intervals during the day at various stages of the growing season (Day of the Year (DOY): 86 (late winter), 128 (mid‐spring) and 155 (early summer)) on a plum tree (Prunus domestica L. cv. Reine Claude d'Oullins). We used the recorded pHx to calculate [] based on Tstem and the corresponding measured [CO2]. No statistically significant difference was found between mean [] calculated with instantaneous pHx and daily average pHx. However, using an average pHx value from a different part of the growing season than the measurements of [CO2] and Tstem to estimate [] led to a statistically significant error. The error varied between 3.25 ± 0.01% under‐estimation and 3.97 ± 0.01% over‐estimation, relative to the true [] data. Measured pHx did not show a significant daily variation, unlike [CO2], which increased during the day and declined at night. As the growing season progressed, daily average [CO2] (3.4%, 5.3%, 7.4%) increased and average pHx (5.43, 5.29, 5.20) decreased. Increase in [CO2] will increase its solubility in xylem sap according to Henry's law, and the dissociation of [] will negatively affect pHx. Our results are the first quantifying the error in [] due to the interaction between [CO2] and pHx on a seasonal time scale. We found significant changes in pHx across the growing season, but overall the effect on the calculation of [] remained within an error range of 4%. However, it is possible that the error could be more substantial for other tree species, particularly if pHx is in the more sensitive range (pHx > 6.5).  相似文献   

5.
In freshwaters, algal species are exposed to different inorganic nitrogen (Ni) sources whose incorporation varies in biochemical energy demand. We hypothesized that due to the lesser energy requirement of ammonium ()‐use, in contrast to nitrate ()‐use, more energy remains for other metabolic processes, especially under CO2‐ and phosphorus (Pi) limiting conditions. Therefore, we tested differences in cell characteristics of the green alga Chlamydomonas acidophila grown on or under covariation of CO2 and Pi‐supply in order to determine limitations, in a full‐factorial design. As expected, results revealed higher carbon fixation rates for ‐grown cells compared to growth with under low CO2 conditions. ‐grown cells accumulated more of the nine analyzed amino acids, especially under Pi‐limited conditions, compared to cells provided with . This is probably due to a slower protein synthesis in cells provided with . In contrast to our expectations, compared to ‐grown cells ‐grown cells had higher photosynthetic efficiency under Pi‐limitation. In conclusion, growth on the Ni‐source did not result in a clearly enhanced Ci‐assimilation, as it was highly dependent on Pi and CO2 conditions (replete or limited). Results are potentially connected to the fact that C. acidophila is able to use only CO2 as its inorganic carbon (Ci) source.  相似文献   

6.
In most plants, constitutes the major source of nitrogen, and its assimilation into amino acids is mainly achieved in shoots. Furthermore, recent reports have revealed that reduction of translocation from roots to shoots is involved in plant acclimation to abiotic stress. NPF2.3, a member of the NAXT (nitrate excretion transporter) sub‐group of the NRT1/PTR family (NPF) from Arabidopsis, is expressed in root pericycle cells, where it is targeted to the plasma membrane. Transport assays using NPF2.3‐enriched Lactococcus lactis membranes showed that this protein is endowed with transport activity, displaying a strong selectivity for against Cl?. In response to salt stress, translocation to shoots is reduced, at least partly because expression of the root stele transporter gene NPF7.3 is decreased. In contrast, NPF2.3 expression was maintained under these conditions. A loss‐of‐function mutation in NPF2.3 resulted in decreased root‐to‐shoot translocation and reduced shoot content in plants grown under salt stress. Also, the mutant displayed impaired shoot biomass production when plants were grown under mild salt stress. These mutant phenotypes were dependent on the presence of Na+ in the external medium. Our data indicate that NPF2.3 is a constitutively expressed transporter whose contribution to translocation to the shoots is quantitatively and physiologically significant under salinity.  相似文献   

7.
When establishing a treatment in clinical trials, it is important to evaluate both effectiveness and toxicity. In phase II clinical trials, multinomial data are collected in m‐stage designs, especially in two‐stage () design. Exact tests on two proportions, for the response rate and for the nontoxicity rate, should be employed due to limited sample sizes. However, existing tests use certain parameter configurations at the boundary of null hypothesis space to determine rejection regions without showing that the maximum Type I error rate is achieved at the boundary of null hypothesis. In this paper, we show that the power function for each test in a large family of tests is nondecreasing in both and ; identify the parameter configurations at which the maximum Type I error rate and the minimum power are achieved and derive level‐α tests; provide optimal two‐stage designs with the least expected total sample size and the optimization algorithm; and extend the results to the case of . Some R‐codes are given in the Supporting Information.  相似文献   

8.
9.
A mother can influence a trait in her offspring both by the genes she transmits (Mendelian inheritance) and by maternal attributes that directly affect that trait in her offspring (maternal inheritance). Maternal inheritance can alter the direction, rate, and duration of adaptive evolution from standard Mendelian models and its impact on adaptive evolution is virtually unexplored in natural populations. In a hierarchical quantitative genetic analysis to determine the magnitude and structure of maternal inheritance in the winter annual plant, Collinsia verna, I consider three potential models of inheritance. These range from a standard Mendelian model estimating only direct (i.e., Mendelian) additive and environmental variance components to a maternal inheritance model estimating six additive and environmental variance components: direct additive and environmental variances; maternal additive and environmental variances; and the direct-maternal additive () and environmental covariances. The structure of maternal inheritance differs among the 10 traits considered at four stages in the life cycle. Early in the life cycle, seed weight and embryo weight display substantial , a negative , and a positive . Subsequently, cotyledon diameter displays and of roughly the same magnitude and negative . For fall rosettes, leaf number and length are best described by a Mendelian model. In the spring, leaf length displays maternal inheritance with significant and and a negative . All maternally inherited traits show significant negative . Predicted response to selection under maternal inheritance depends on and as well as . Negative results in predicted responses in the opposite direction to selection for seed weight and embryo weight and predicted responses near zero for all subsequent maternally inherited traits. Maternal inheritance persists through the life cycle of this annual plant for a number of size-related traits and will alter the direction and rate of evolutionary response in this population.  相似文献   

10.
The potential ecological impacts of switchgrass (Panicum virgatum L.), as a biofuel feedstock, have been assessed under different environmental conditions. However, limited information is available in understanding the integrated analysis of nitrogen (N) dynamics including soil nitrate (), nitrous oxide (N2O) emissions, and leaching under switchgrass land management. The specific objective was to explore N dynamics for 2009 through 2015 in switchgrass seeded to a marginally yielding cropland based on treatments of N fertilization rate (N rate; low, 0; medium, 56; high, 112 kg N ha?1) and landscape position (shoulder, backslope, and footslope). Our findings indicated that N rate impacted soil (0–5 cm depth) and surface N2O fluxes but did not impact leaching during the observed years. Medium N (56 kg N ha?1) was the optimal rate for increasing biomass yield with reduced environmental problems. Landscape position impacted the N dynamics. At the footslope position, soil , soil leaching, and N2O fluxes were higher than the other landscape positions. Soil N2O fluxes and leaching had downward trends over the observed years. Growing switchgrass on marginally yielding croplands can store soil N, reduce N losses via leaching, and mitigate N2O emissions from soils to the atmosphere over the years. Switchgrass seeded on marginally yielding croplands can be beneficial in reducing N losses and can be grown as a sustainable bioenergy crop on these marginal lands.  相似文献   

11.
Using nonlinear optical microscopy of coherent antistokes Raman scattering (CARS), second harmonic generation (SHG) and two‐photo excitation fluorescence, we in situ observed how the collagen and the bone grow synergistically and competitively during nascent biological evolution. The and ions were first observed to be dispersed in the liquid environment, and the collagen was observed 2 days later. With the help of the collagen, the and ions gradually moved closer to the collagen, and then the bone was produced in the forms of CaCO3 and CaPO3. When the bone was completed with the help of the collagen, the collagen gradually disappeared. The biological evolution of snail bone and collagen can be well revealed by CARS and SHG, and in addition, the biological evolution of structure and morphology can be clearly observed day by day.  相似文献   

12.
Accurate estimates of heritability () are necessary to assess adaptive responses of populations and evolution of fitness‐related traits in changing environments. For plants, estimates generally rely on maternal progeny designs, assuming that offspring are either half‐sibs or unrelated. However, plant mating systems often depart from half‐sib assumptions, this can bias estimates. Here, we investigate how to accurately estimate in nonmodel species through the analysis of sibling designs with a moderate genotyping effort. We performed simulations to investigate how microsatellite marker information available for only a subset of offspring can improve estimates based on maternal progeny designs in the presence of nonrandom mating, inbreeding in the parental population or maternal effects. We compared the basic family method, considering or not adjustments based on average relatedness coefficients, and methods based on the animal model. The animal model was used with average relatedness information, or with hybrid relatedness information: associating one‐generation pedigree and family assumptions, or associating one‐generation pedigree and average relatedness coefficients. Our results highlighted that methods using marker‐based relatedness coefficients performed as well as pedigree‐based methods in the presence of nonrandom mating (i.e. unequal male reproductive contributions, selfing), offering promising prospects to investigate in situ heritabilities in natural populations. In the presence of maternal effects, only the use of pairwise relatednesses through pedigree information improved the accuracy of estimates. In that case, the amount of father‐related offspring in the sibling design is the most critical. Overall, we showed that the method using both one‐generation pedigree and average relatedness coefficients was the most robust to various ecological scenarios.  相似文献   

13.
Models of the maintenance of genetic variance in a polygenic trait have usually assumed that population size is infinite and that selection is weak. Consequently, they will overestimate the amount of variation maintained in finite populations. I derive approximations for the equilibrium genetic variance, in finite populations under weak stabilizing selection for triallelic loci and for an infinite “rare alleles” model. These are compared to results for neutral characters, to the “Gaussian allelic” model, and to Wright's approximation for a biallelic locus under arbitrary selection pressures. For a variety of parameter values, the three-allele, Gaussian, and Wrightian approximations all converge on the neutral model when population size is small. As expected, far less equilibrium genetic variance can be maintained if effective population size, N, is on the order of a few hundred than if N is infinite. All of the models predict that comparisons among populations with N less than about 104 should show substantial differences in . While it is easier to maintain absolute when alleles interact to yield dominance or overdominance for fitness, less additivity also makes more susceptible to differences in N. I argue that experimental data do not seem to reflect the predicted degree of relationship between N and . This calls into question the ability of mutation-selection balance or simple balancing selection to explain observed . The dependence of on N could be used to test the adequacy of mutation-selection balance models.  相似文献   

14.
The immediate capacity for adaptation under current environmental conditions is directly proportional to the additive genetic variance for fitness, VA(W). Mean absolute fitness, , is predicted to change at the rate , according to Fisher's Fundamental Theorem of Natural Selection. Despite ample research evaluating degree of local adaptation, direct assessment of VA(W) and the capacity for ongoing adaptation is exceedingly rare. We estimated VA(W) and in three pedigreed populations of annual Chamaecrista fasciculata, over three years in the wild. Contrasting with common expectations, we found significant VA(W) in all populations and years, predicting increased mean fitness in subsequent generations (0.83 to 6.12 seeds per individual). Further, we detected two cases predicting “evolutionary rescue,” where selection on standing VA(W) was expected to increase fitness of declining populations (< 1.0) to levels consistent with population sustainability and growth. Within populations, inter‐annual differences in genetic expression of fitness were striking. Significant genotype‐by‐year interactions reflected modest correlations between breeding values across years, indicating temporally variable selection at the genotypic level that could contribute to maintaining VA(W). By directly estimating VA(W) and total lifetime , our study presents an experimental approach for studies of adaptive capacity in the wild.  相似文献   

15.
The mean crowding has previously been measured under the assumption that all quadrats or habitat units have the same size, even though the actual habitat units such as seeds or leaves are generally variable in size. A new index, ‘adjusted mean crowding’, which is adjusted for this variability can be given as where Q is the total number of habitat units in the whole area, xj the number of individuals in the jth habitat unit, and aj is defined as the ‘relative size’ of the jth habitat unit, i.e. ay=yy/(∑yj/Q) where yj is the actually measured size of the jth habitat unit. It is expected that and for the uniform distribution and the random distribution ‘per unit size’, respectively. The comparison between and regressions ( analysis) for the egg distribution pattern of Callosobruchus chinensis or C. maculatus proved that the regression is biased by a positive correlation between the egg number per seed and seed size rather than by a density-dependent change in the ovipositional behavior.  相似文献   

16.
A method for the analysis of spatial pattern using quadrats of different sizes is developed on the basis of the relationship of mean crowding () to mean density (m). The -on-m regression obtained by successive changes in quadrat size in a single population (unit-size relation) shows a characteristic pattern according to the type of distribution. By aid of the ρ-index proposed here, we can distinguish the random, aggregated and uniform distributions of the basic components (individual or group of individuals). The ρ serves as an index of spatial correlation between neighbouring quadrats, and it also provides information on the approximate area occupied by clump (colony), distribution pattern of individuals within clumps, and possibly the distribution pattern of clumps themselves. Even in a specified type of distribution, the unit-size relation is not necessarily identical with the relation for a series of populations at a particular quadrat size (series relation). The changes in the series relationship with successive changes of quadrat sizes are also considered for some basic patterns of distributions. The combined use of the unit-size and the series relations for a set of populations of the species under study may provide a satisfactory picture of the spatial pattern characteristic of the species. Application of the method is illustrated by using distribution data of several species of animals and plants. The advantage of the present method over other methods are discussed, and the formulae for determining the optimum quadrat unit in sampling surveys are given.  相似文献   

17.
Rising atmospheric CO2 concentrations is expected to stimulate photosynthesis and carbohydrate production, while inhibiting photorespiration. By contrast, nitrogen (N) concentrations in leaves generally tend to decline under elevated CO2 (eCO2), which may reduce the magnitude of photosynthetic enhancement. We tested two hypotheses as to why leaf N is reduced under eCO2: (a) A “dilution effect” caused by increased concentration of leaf carbohydrates; and (b) inhibited nitrate assimilation caused by reduced supply of reductant from photorespiration under eCO2. This second hypothesis is fully tested in the field for the first time here, using tall trees of a mature Eucalyptus forest exposed to Free‐Air CO2 Enrichment (EucFACE) for five years. Fully expanded young and mature leaves were both measured for net photosynthesis, photorespiration, total leaf N, nitrate () concentrations, carbohydrates and reductase activity to test these hypotheses. Foliar N concentrations declined by 8% under eCO2 in new leaves, while the fraction and total carbohydrate concentrations remained unchanged by CO2 treatment for either new or mature leaves. Photorespiration decreased 31% under eCO2 supplying less reductant, and in situ reductase activity was concurrently reduced (?34%) in eCO2, especially in new leaves during summer periods. Hence, assimilation was inhibited in leaves of E. tereticornis and the evidence did not support a significant dilution effect as a contributor to the observed reductions in leaf N concentration. This finding suggests that the reduction of reductase activity due to lower photorespiration in eCO2 can contribute to understanding how eCO2‐induced photosynthetic enhancement may be lower than previously expected. We suggest that large‐scale vegetation models simulating effects of eCO2 on N biogeochemistry include both mechanisms, especially where is major N source to the dominant vegetation and where leaf flushing and emergence occur in temperatures that promote high photorespiration rates.  相似文献   

18.
Information about how bird species respond to increasing density conditions through either space‐use sharing or increased territoriality, and how those changes affect fitness, is essential for effective conservation planning. We used a case study of endangered Red‐cockaded Woodpeckers Leuconotopicus borealis (RCW) to address these questions. We documented over 36 000 locations from 44 RCW groups in three density conditions on two sites in South Carolina, USA, between April 2013 and March 2015. The frequency of neighbouring group interactions differed among density conditions and was highest for high‐density groups. RCW home‐ranges and core‐areas were larger under low‐density conditions ( = 88.4 ha,  = 21.0 ha) than under medium ( = 68.29 ha,  = 16.6 ha) and high‐density ( = 76.3 ha,  = 18.6 ha) conditions. Neighbouring RCWs maintained overlapping home‐ranges with nearly exclusive core‐areas across density conditions, but overlap tended to increase as neighbouring group density increased. Under high‐density conditions, home‐range overlap correlated inversely with clutch size (β ± se = ?0.19 ± 0.09), nestling production (β ± se = ?0.37 ± 0.09) and fledgling production (β ± se = ?0.34 ± 0.08). Our results indicate that RCWs dedicate more effort to territorial defence under high‐density conditions, potentially at the expense of greater foraging efficiency and time allocated to reproduction, as evidenced by reduced fitness. Large home‐range overlap indicated limited territoriality farther away from cavity trees, but the existence of exclusive core‐areas suggests that RCW groups defend habitat closer to cavity trees. Thiessen partitions used to allocate critical foraging habitat offered comprehensive habitat protection for RCW but appear flawed for spatially explicit habitat assessments because they do not accurately delineate space used by individual RCW groups.  相似文献   

19.
Statistics and Jost's D have been proposed for replacing FST as measures of genetic differentiation. A principal argument in favour of these statistics is the independence of their maximal values with respect to the subpopulation heterozygosity HS, a property not shared by FST. Nevertheless, it has been unclear if these alternative differentiation measures are constrained by other aspects of the allele frequencies. Here, for biallelic markers, we study the mathematical properties of the maximal values of and D, comparing them to those of FST. We show that and D exhibit the same peculiar frequency‐dependence phenomena as FST, including a maximal value as a function of the frequency of the most frequent allele that lies well below one. Although the functions describing , D, and FST in terms of the frequency of the most frequent allele are different, the allele frequencies that maximize them are identical. Moreover, we show using coalescent simulations that when taking into account the specific maximal values of the three statistics, their behaviours become similar across a large range of migration rates. We use our results to explain two empirical patterns: the similar values of the three statistics among North American wolves, and the low D values compared to and FST in Atlantic salmon. The results suggest that the three statistics are often predictably similar, so that they can make quite similar contributions to data analysis. When they are not similar, the difference can be understood in relation to features of genetic diversity.  相似文献   

20.
Polarization‐dependent second‐harmonic generation (P‐SHG) microscopy is used to characterize molecular nonlinear optical properties of collagen and determine a three‐dimensional (3D) orientation map of collagen fibers within a pig tendon. C6 symmetry is used to determine the nonlinear susceptibility tensor components ratios in the molecular frame of reference and , where the latter is a newly extracted parameter from the P‐SHG images and is related to the chiral structure of collagen. The is observed for collagen fibers tilted out of the image plane, and can have positive or negative values, revealing the relative polarity of collagen fibers within the tissue. The P‐SHG imaging was performed using a linear polarization‐in polarization‐out (PIPO) method on thin sections of pig tendon cut at different angles. The nonlinear chiral properties of collagen can be used to construct the 3D organization of collagen in the tissue and determine the orientation‐independent molecular susceptibility ratios of collagen fibers in the molecular frame of reference.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号