首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Cotton fiber is an excellent model system of cellulose biosynthesis; however, it has not been widely studied due to the lack of information about the cellulose synthase (CESA) family of genes in cotton. In this study, we initially identified six full-length CESA genes designated as GhCESA5–GhCESA10. Phylogenetic analysis and gene co-expression profiling revealed that CESA1, CESA2, CESA7, and CESA8 were the major isoforms for secondary cell wall biosynthesis, whereas CESA3, CESA5, CESA6, CESA9, and CESA10 should involve in primary cell wall formation for cotton fiber initiation and elongation. Using integrative analysis of gene expression patterns, CESA protein levels, and cellulose biosynthesis in vivo, we detected that CESA8 could play an enhancing role for rapid and massive cellulose accumulation in Gossypium hirsutum and Gossypium barbadense. We found that CESA2 displayed a major expression in non-fiber tissues and that CESA1, a housekeeping gene like, was predominantly expressed in all tissues. Further, a dynamic alteration was observed in cell wall composition and a significant discrepancy was observed between the cotton species during fiber elongation, suggesting that pectin accumulation and xyloglucan reduction might contribute to cell wall transition. In addition, we discussed that callose synthesis might be regulated in vivo for massive cellulose production during active secondary cell wall biosynthesis in cotton fibers.  相似文献   

3.
4.
Goss CA  Brockmann DJ  Bushoven JT  Roberts AW 《Planta》2012,235(6):1355-1367
In seed plants, different groups of orthologous genes encode the CELLULOSE SYNTHASE (CESA) proteins that are responsible for cellulose biosynthesis in primary and secondary cell walls. The seven CESA sequences of the moss Physcomitrella patens (Hedw.) B. S. G. form a monophyletic sister group to seed plant CESAs, consistent with independent CESA diversification and specialization in moss and seed plant lines. The role of PpCESA5 in the development of P. patens was investigated by targeted mutagenesis. The cesa5 knockout lines were tested for cellulose deficiency using carbohydrate-binding module affinity cytochemistry and the morphology of the leafy gametophores was analyzed by 3D reconstruction of confocal images. No defects were identified in the development of the filamentous protonema or in production of bud initials that normally give rise to the leafy gametophores. However, the gametophore buds were cellulose deficient and defects in subsequent cell expansion, cytokinesis, and leaf initiation resulted in the formation of irregular cell clumps instead of leafy shoots. Analysis of the cesa5 knockout phenotype indicates that a biophysical model of organogenesis can be extended to the moss gametophore shoot apical meristem.  相似文献   

5.
Genetic modification of plant cell walls has been posed to reduce lignocellulose recalcitrance for enhancing biomass saccharification. Since cellulose synthase (CESA) gene was first identified, several dozen CESA mutants have been reported, but almost all mutants exhibit the defective phenotypes in plant growth and development. In this study, the rice (Oryza sativa) Osfc16 mutant with substitutions (W481C, P482S) at P‐CR conserved site in CESA9 shows a slightly affected plant growth and higher biomass yield by 25%–41% compared with wild type (Nipponbare, a japonica variety). Chemical and ultrastructural analyses indicate that Osfc16 has a significantly reduced cellulose crystallinity (CrI) and thinner secondary cell walls compared with wild type. CESA co‐IP detection, together with implementations of a proteasome inhibitor (MG132) and two distinct cellulose inhibitors (Calcofluor, CGA), shows that CESA9 mutation could affect integrity of CESA4/7/9 complexes, which may lead to rapid CESA proteasome degradation for low‐DP cellulose biosynthesis. These may reduce cellulose CrI, which improves plant lodging resistance, a major and integrated agronomic trait on plant growth and grain production, and enhances biomass enzymatic saccharification by up to 2.3‐fold and ethanol productivity by 34%–42%. This study has for the first time reported a direct modification for the low‐DP cellulose production that has broad applications in biomass industries.  相似文献   

6.
In higher plants, cellulose is synthesized by cellulose synthase complexes, which contain multiple isoforms of cellulose synthases (CESAs). Among the total 10 CESA genes in Arabidopsis, recessive mutations at three of them cause the collapse of mature xylem cells in inflorescence stems of Arabidopsis (irx1cesa8, irx3cesa7 and irx5cesa4). These CESA genes are considered secondary cell wall CESAs. The others (the function CESA10 is still unknown) are thought to be specialized for cellulose synthesis in the primary cell wall. A split-ubiquitin membrane yeast two-hybrid system was used to assess interactions among four primary CESAs (CESA1, CESA2, CESA3, CESA6) and three secondary CESAs (CESA4, CESA7, CESA8). Our results showed that primary CESAs could physically interact with secondary CESAs in a limited fashion. Analysis of transgenic lines showed that CESA1 could partially rescue irx1cesa8 null mutants, resulting in complementation of the plant growth defect, collapsed xylem and cellulose content deficiency. These results suggest that mixed primary and secondary CESA complexes are functional using experimental set-ups.  相似文献   

7.
Manipulation of the cellulose biosynthetic machinery in plants has the potential to provide insight into plant growth, morphogenesis and to create modified cellulose for anthropogenic use. Evidence exists that cellulose microfibril structure and its recalcitrance to enzymatic digestion can ameliorated via mis‐sense mutation in the primary cell wall–specific gene AtCELLULOSE SYNTHASE (CESA)3. This mis‐sense mutation has been identified based on conferring drug resistance to the cellulose inhibitory herbicide isoxaben. To examine whether it would be possible to introduce mutant CESA alleles via a transgenic approach, we overexpressed a modified version of CESA3, AtCESA3ixr1‐2 derived from Arabidopsis thaliana L. Heynh into a different plant family, the Solanceae dicotyledon tobacco (Nicotiana tabacum L. variety Samsun NN). Specifically, a chimeric gene construct of CESA3ixr1‐2, codon optimized for tobacco, was placed between the heterologous M24 promoter and the rbcSE9 gene terminator. The results demonstrated that the tobacco plants expressing M24‐CESA3ixr1‐2 displayed isoxaben resistance, consistent with functionality of the mutated AtCESA3ixr1‐2 in tobacco. Secondly, during enzymatic saccharification, transgenic leaf‐ and stem‐derived cellulose is 54%–66% and 40%–51% more efficient, respectively, compared to the wild type, illustrating translational potential of modified CESA loci. Moreover, the introduction of M24‐AtCESA3ixr1‐2 caused aberrant spatial distribution of lignified secondary cell wall tissue and a reduction in the zone occupied by parenchyma cells.  相似文献   

8.
The CESA gene superfamily of Arabidopsis and other seed plants comprises the CESA family, which encodes the catalytic subunits of cellulose synthase, and eight families of CESA-like (CSL) genes whose functions are largely unknown. The CSL genes have been proposed to encode processive β-glycosyl transferases that synthesize noncellulosic cell wall polysaccharides. BLAST searches of EST and shotgun genomic sequences from the moss Physcomitrella patens (Hedw.) B.S.G. were used to identify genes with high similarity to vascular plant CESAs, CSLAs, CSLCs, and CSLDs. However, searches using Arabidopsis CSLBs, CSLEs, and CSLGs or rice CSLFs or CSLHs as queries identified no additional CESA superfamily members in P. patens, indicating that this moss lacks representatives of these families. Intron insertion sites are highly conserved between Arabidopsis and P. patens in all four shared gene families. However, phylogenetic analysis strongly supports independent diversification of the shared families in mosses and vascular plants. The lack of orthologs of vascular plant CESAs in the P. patens genome indicates that the divergence of mosses and vascular plants predated divergence and specialization of CESAs for primary and secondary cell wall syntheses and for distinct roles within the rosette terminal complexes. In contrast to Arabidopsis, the CSLD family is highly represented among P. patens ESTs. This is consistent with the proposed function of CSLDs in tip growth and the central role of tip growth in the development of the moss protonema. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users. Accession numbers: DQ417756, DQ417757, DQ898284–6, DQ898147–54, DQ902545–51.  相似文献   

9.
10.
Primary cell wall cellulose is synthesized by the cellulose synthase complex (CSC) containing CELLULOSE SYNTHASE1 (CESA1), CESA3 and one of four CESA6‐like proteins in Arabidopsis. It has been proposed that the CESA6‐like proteins occupy the same position in the CSC, but their underlying selection mechanism remains unclear. We produced a chimeric CESA5 by replacing its N‐terminal zinc finger with its CESA6 counterpart to investigate the consequences for its homodimerization, a crucial step in forming higher‐order structures during assembly of the CSC. We found that the mutant phenotypes of prc1‐1, a cesa6 null mutant, were rescued by the chimeric CESA5, and became comparable to the wild type (WT) and prc1‐1 complemented by WT CESA6 in regard to plant growth, cellulose content, cellulose microfibril organization, CSC dynamics and subcellular localization. Bimolecular fluorescence complementation assays were employed to evaluate pairwise interactions between the N‐terminal regions of CESA1, CESA3, CESA5, CESA6 and the chimeric CESA5. We verified that the chimeric CESA5 explicitly interacted with all the other CESA partners, comparable to CESA6, whereas interaction between CESA5 with itself was significantly weaker than that of all other CESA pairs. Our findings suggest that the homodimerization of CESA6 through its N‐terminal zinc finger is critical in defining its functional properties, and possibly determines its intrinsic roles in facilitating higher‐order structures in CSCs.  相似文献   

11.
The cell walls of Porphyra species, like those of land plants, contain cellulose microfibrils that are synthesized by clusters of cellulose synthase enzymes (“terminal complexes”), which move in the plasma membrane. However, the morphologies of the Porphyra terminal complexes and the cellulose microfibrils they produce differ from those of land plants. To characterize the genetic basis for these differences, we have identified, cloned, and sequenced a cellulose synthase (CESA) gene from Porphyra yezoensis Ueda strain TU‐1. A partial cDNA sequence was identified in the P. yezoensis expressed sequence tag (EST) index using a land plant CESA sequence as a query. High‐efficiency thermal asymmetric interlaced PCR was used to amplify sequences upstream of the cDNA sequence from P. yezoensis genomic DNA. Using the resulting genomic sequences as queries, we identified additional EST sequences and a full‐length cDNA clone, which we named PyCESA1. The conceptual translation of PyCESA1 includes the four catalytic domains and the N‐ and C‐terminal transmembrane domains that characterize CESA proteins. Genomic PCR demonstrated that PyCESA1 contains no introns. Southern blot analysis indicated that P. yezoensis has at least three genomic sequences with high similarity to the cloned gene; two of these are pseudogenes based on analysis of amplified genomic sequences. The P. yezoensis CESA peptide sequence is most similar to cellulose synthase sequences from the oomycete Phytophthora infestans and from cyanobacteria. Comparing the CESA genes of P. yezoensis and land plants may facilitate identification of sequences that control terminal complex and cellulose microfibril morphology.  相似文献   

12.
Hydroxyproline O‐arabinosyltransferases (HPATs) are members of a small, deeply conserved family of plant‐specific glycosyltransferases that add arabinose sugars to diverse proteins including cell wall‐associated extensins and small signaling peptides. Recent genetic studies in flowering plants suggest that different HPAT homologs have been co‐opted to function in diverse species‐specific developmental contexts. However, nothing is known about the roles of HPATs in basal plants. We show that complete loss of HPAT function in Arabidopsis thaliana and the moss Physcomitrella patens results in a shared defect in gametophytic tip cell growth. Arabidopsis hpat1/2/3 triple knockout mutants suffer from a strong male sterility defect as a consequence of pollen tubes that fail to fully elongate following pollination. Knocking out the two HPAT genes of Physcomitrella results in larger multicellular filamentous networks due to increased elongation of protonemal tip cells. Physcomitrella hpat mutants lack cell‐wall associated hydroxyproline arabinosides and can be rescued with exogenous cellulose, while global expression profiling shows that cell wall‐associated genes are severely misexpressed, implicating a defect in cell wall formation during tip growth. Our findings point to a major role for HPATs in influencing cell elongation during tip growth in plants.  相似文献   

13.
14.
The cellulose synthase (CESA) membrane complex synthesizes microfibrils of cellulose that surround all plant cells. Cellulose is made of sugar (β,1‐4 glucan) and accessing the sugar in cellulose for biofuels is of critical importance to stem the use of fossil fuels and avoid competition with food crops and pristine lands associated with starch‐based biofuel production. The recalcitrance of cellulose to enzymatic conversion to a fermentable form of sugar is related to the degree of hydrogen bonding or crystallization of the glucan chain. Herein, we isolate the first viable low biomass‐crystallinity mutant by screening for altered cell wall structure using X‐ray scattering as well as screening for enzymatic conversion efficiency on a range of cell wall mutants in the model plant Arabidopsis thaliana (L.) Heynh. Through detailed analysis of the kinetics of bioconversion we identified a mutant that met both selection criteria. This mutant is ixr1‐2, which contains a mutation in a highly conserved consensus sequence among the C‐terminal transmembrane regions within CESA3. A 34% lower biomass crystallization index and 151% improvement in the efficiency of conversion from raw biomass to fermentable sugars was measured relative to that of wild type (Col‐0). Recognizing the inherent ambiguities with an insoluble complex substrate like cellulose and how little is still understood regarding the regulation of CESA we propose a general model for how to manipulate CESA enzymes to improve the recalcitrance of cellulose to enzymatic hydrolysis. This study also raises intriguing possibilities as to the functional importance of transmembrane anchoring in CESA complex and microfibril formation.  相似文献   

15.
16.
Ranunculaceae are a nearly cosmopolitan plant family with the highest diversity in northern temperate regions and with relatively few representatives in the tropics. As a result of their position among the early diverging eudicots and their horticultural value, the family is of great phylogenetic and taxonomic interest. Despite this, many genera remain poorly sampled in phylogenetic studies and taxonomic problems persist. In this study, we aim to clarify the infrageneric relationships of Clematis by greatly improving taxon sampling and including most of the relevant subgeneric and sectional types in a simultaneous dynamic optimization of phenotypic and molecular data. We also investigate how well the available data support the hypothesis of phylogenetic relationships in the family. At the family level, all five currently accepted subfamilies are resolved as monophyletic. Our analyses strongly imply that Anemone s.l. is a grade with respect to the Anemoclema Clematis clade. This questions the recent sinking of well‐established genera, including Hepatica, Knowltonia and Pulsatilla, into Anemone. In Clematis, 12 clades conceptually matching the proposed sectional division of the genus were found. The taxonomic composition of these clades often disagrees with previous classifications. Phylogenetic relationships between the section‐level clades remain highly unstable and poorly supported and, although some patterns are emerging, none of the proposed subgenera is in evidence. The traditionally recognized and horticulturally significant section Viorna is both nomenclaturally invalid and phylogenetically unsupported. Several other commonly used sections are likewise unjustified. Our results provide a phylogenetic background for a natural section‐level classification of Clematis.  相似文献   

17.
18.
19.
Engineering compositional changes in oilseeds is typically accomplished by introducing new enzymatic step(s) and/or by blocking or enhancing an existing enzymatic step(s) in a seed‐specific manner. However, in practice, the amounts of lipid species that accumulate in seeds are often different from what one would predict from enzyme expression levels, and these incongruences may be rooted in an incomplete understanding of the regulation of seed lipid metabolism at the cellular/tissue level. Here we show by mass spectrometry imaging approaches that triacylglycerols and their phospholipid precursors are distributed differently within cotyledons and the hypocotyl/radicle axis in embryos of the oilseed crop Camelina sativa, indicating tissue‐specific heterogeneity in triacylglycerol metabolism. Phosphatidylcholines and triacylglycerols enriched in linoleic acid (C18:2) were preferentially localized to the axis tissues, whereas lipid classes enriched in gadoleic acid (C20:1) were preferentially localized to the cotyledons. Manipulation of seed lipid compositions by heterologous over‐expression of an acyl–acyl carrier protein thioesterase, or by suppression of fatty acid desaturases and elongases, resulted in new overall seed storage lipid compositions with altered patterns of distribution of phospholipid and triacylglycerol in transgenic embryos. Our results reveal previously unknown differences in acyl lipid distribution in Camelina embryos, and suggest that this spatial heterogeneity may or may not be able to be changed effectively in transgenic seeds depending upon the targeted enzyme(s)/pathway(s). Further, these studies point to the importance of resolving the location of metabolites in addition to their quantities within plant tissues.  相似文献   

20.
Rhamnogalacturonan lyases (RGLs; EC 4.2.2.23) degrade the rhamnogalacturonan I (RG‐I) backbone of pectins present in the plant cell wall. These enzymes belong to polysaccharide lyase family 4, members of which are mainly from plants and plant pathogens. RGLs are investigated, as a rule, as pathogen ‘weapons’ for plant cell wall degradation and subsequent infection. Despite the presence of genes annotated as RGLs in plant genomes and the presence of substrates for enzyme activity in plant cells, evidence supporting the involvement of this enzyme in certain processes is limited. The differential expression of some RGL genes in flax (Linum usitatissimum L.) tissues, revealed in our previous work, prompted us to carry out a total revision (phylogenetic analysis, analysis of expression and protein structure modeling) of all the sequences of flax predicted as coding for RGLs. Comparison of the expressions of LusRGL in various tissues of flax stem revealed that LusRGLs belong to distinct phylogenetic clades, which correspond to two co‐expression groups. One of these groups comprised LusRGL6‐A and LusRGL6‐B genes and was specifically upregulated in flax fibers during deposition of the tertiary cell wall, which has complex RG‐I as a key noncellulosic component. The results of homology modeling and docking demonstrated that the topology of the LusRGL6‐A catalytic site allowed binding to the RG‐I ligand. These findings lead us to suggest the presence of RGL activity in planta and the involvement of special isoforms of RGLs in the modification of RG‐I of the tertiary cell wall in plant fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号