首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of elevated carbon dioxide concentration on the changes in the biomass, photosynthesis and nutrient composition was investigated in two leafy vegetables. Spinach (Spinacia oleracea L.) and fenugreek (Trigonella foenum-graecum L.) plants were grown in open top chambers under either ambient (ACO2, 350 ± 50 μmol mol−1) or elevated (ECO2, 600 ± 50 μmol mol−1) CO2 concentration and analyzed 40, 60 and 80 days after exposure. The plants grown in ECO2 had higher net photosynthetic rate and lower stomatal conductance when compared with the plants grown in ACO2. ECO2 also changed the nutrient composition: a lower N, Mg and Fe contents and higher C and Ca contents were observed in the leaves of plants exposed to ECO2 than in those grown at ACO2.  相似文献   

2.
A greater understanding of how climate change will affect crop photosynthetic performance has been described as a target goal to improve yield potential. Other concomitant stressors can reduce the positive effect of elevated atmospheric CO2 on wheat yield. Arbuscular mycorrhizal fungi (AMF) are symbiotic fungi predicted to be important in defining plant responses to rising atmospheric CO2, but their role in response to global climatic change is still poorly understood. This study aimed to assess if increased atmospheric CO2 interacting with drought can modify the effects of mycorrhizal symbiosis on flag leaf physiology in winter wheat. The study was performed in climate-controlled greenhouses with ambient (400 ppm, ACO2) or elevated (700 ppm, ECO2) CO2 concentrations in the air. Within each greenhouse half of the plants were inoculated with Rhizophagus intraradices. When ear emergence began, half of the plants from each mycorrhizal and CO2 treatment were subjected to terminal drought. At ACO2 AMF improved the photochemistry efficiency of PSII compared with non-mycorrhizal plants, irrespective of irrigation regime. Mycorrhizal wheat accumulated more fructan than non-mycorrhizal plants under optimal irrigation. The level of proline in the flag leaf increased only in mycorrhizal wheat after applying drought. Mycorrhizal association avoided photosynthetic acclimation under ECO2. However, nitrogen availability to flag leaves in mycorrhizal plants was lower under ECO2 than at ACO2. Results suggest that the mechanisms underlying the interactions between mycorrhizal association and atmospheric CO2 concentration can be crucial for the benefits that this symbiosis can provide to wheat plants undergoing water deficit.  相似文献   

3.
Asian soybean rust (ASR), caused by Phakopsora pachyrhizi, is one of the most important foliar diseases affecting soybean production worldwide. This study aimed to investigate the photosynthetic performance (leaf gas exchange, chlorophyll (Chl) a fluorescence images and photosynthetic pigment pools) of soybean plants sprayed with Acibenzolar‐S‐Methyl (ASM) and the fungicide epoxiconazole + pyraclostrobin (Epo+Pyr) and further inoculated with P. pachyrhizi. The ASR symptoms progressed much faster on the leaves of plants from the control treatment (water spray) in comparison with the ASM and Epo+Pyr treatments. In general, the values for the leaf gas exchange parameters net carbon assimilation rate (A), stomatal conductance to water vapour (gs), internal CO2 concentration (Ci) and transpiration rate (E) increased for the infected plants sprayed with ASM or Epo+Pyr in comparison with plants from the control treatment. The values for the initial fluorescence (Fo), maximal fluorescence (Fm), maximal photosystem II quantum efficiency (Fv/Fm), effective photosystem II quantum yield (Y(II)) and quantum yield of regulated energy dissipation (Y(NPQ)) were consistently higher for the ASM and Epo+Pyr treatments in comparison with the control treatment at advanced stages of fungal infection. By contrast, the values for quantum yield of non‐regulated energy dissipation (Y(NO) were significantly lower for the ASM and Epo+Pyr treatments. The concentrations of total Chl a+b and carotenoids significantly increased for infected plants sprayed with ASM and Epo+Pyr in comparison with plants from the control treatment. The results of this study demonstrated that the spray of soybean plants with either ASM or Epo+Pyr contributed to reduce the negative effect of ASR on the photosynthesis of soybean plants.  相似文献   

4.
Although increasing the pCO2 for diatoms will presumably down‐regulate the CO2‐concentrating mechanism (CCM) to save energy for growth, different species have been reported to respond differently to ocean acidification (OA). To better understand their growth responses to OA, we acclimated the diatoms Thalassiosira pseudonana, Phaeodactylum tricornutum, and Chaetoceros muelleri to ambient (pCO2 400 μatm, pH 8.1), carbonated (pCO2 800 μatm, pH 8.1), acidified (pCO2 400 μatm, pH 7.8), and OA (pCO2 800 μatm, pH 7.8) conditions and investigated how seawater pCO2 and pH affect their CCMs, photosynthesis, and respiration both individually and jointly. In all three diatoms, carbonation down‐regulated the CCMs, while acidification increased both the photosynthetic carbon fixation rate and the fraction of CO2 as the inorganic carbon source. The positive OA effect on photosynthetic carbon fixation was more pronounced in C. muelleri, which had a relatively lower photosynthetic affinity for CO2, than in either T. pseudonana or P. tricornutum. In response to OA, T. pseudonana increased respiration for active disposal of H+ to maintain its intracellular pH, whereas P. tricornutum and C. muelleri retained their respiration rate but lowered the intracellular pH to maintain the cross‐membrane electrochemical gradient for H+ efflux. As the net result of changes in photosynthesis and respiration, growth enhancement to OA of the three diatoms followed the order of C. muelleri > P. tricornutum > T. pseudonana. This study demonstrates that elucidating the separate and joint impacts of increased pCO2 and decreased pH aids the mechanistic understanding of OA effects on diatoms in the future, acidified oceans.  相似文献   

5.
Nitrogen fixation by diazotrophic cyanobacteria is a critical source of new nitrogen to the oligotrophic surface ocean. Research to date indicates that some diazotroph groups may increase nitrogen fixation under elevated pCO2. To test this in natural plankton communities, four manipulation experiments were carried out during two voyages in the South Pacific (30–35oS). High CO2 treatments, produced using 750 ppmv CO2 to adjust pH to 0.2 below ambient, and ‘Greenhouse’ treatments (0.2 below ambient pH and ambient temperature +3 °C), were compared with Controls in trace metal clean deckboard incubations in triplicate. No significant change was observed in nitrogen fixation in either the High CO2 or Greenhouse treatments over 5 day incubations. qPCR measurements and optical microscopy determined that the diazotroph community was dominated by Group A unicellular cyanobacteria (UCYN‐A), which may account for the difference in response of nitrogen fixation under elevated CO2 to that reported previously for Trichodesmium. This may reflect physiological differences, in that the greater cell surface area:volume of UCYN‐A and its lack of metabolic pathways involved in carbon fixation may confer no benefit under elevated CO2. However, multiple environmental controls may also be a factor, with the low dissolved iron concentrations in oligotrophic surface waters limiting the response to elevated CO2. If nitrogen fixation by UCYN‐A is not stimulated by elevated pCO2, then future increases in CO2 and warming may alter the regional distribution and dominance of different diazotroph groups, with implications for dissolved iron availability and new nitrogen supply in oligotrophic regions.  相似文献   

6.
Projections of future climate are highly sensitive to uncertainties regarding carbon (C) uptake and storage by terrestrial ecosystems. The Eucalyptus Free‐Air CO2 Enrichment (EucFACE) experiment was established to study the effects of elevated atmospheric CO2 concentrations (eCO2) on a native mature eucalypt woodland with low fertility soils in southeast Australia. In contrast to other FACE experiments, the concentration of CO2 at EucFACE was increased gradually in steps above ambient (+0, 30, 60, 90, 120, and 150 ppm CO2 above ambient of ~400 ppm), with each step lasting approximately 5 weeks. This provided a unique opportunity to study the short‐term (weeks to months) response of C cycle flux components to eCO2 across a range of CO2 concentrations in an intact ecosystem. Soil CO2 efflux (i.e., soil respiration or Rsoil) increased in response to initial enrichment (e.g., +30 and +60 ppm CO2) but did not continue to increase as the CO2 enrichment was stepped up to higher concentrations. Light‐saturated photosynthesis of canopy leaves (Asat) also showed similar stimulation by elevated CO2 at +60 ppm as at +150 ppm CO2. The lack of significant effects of eCO2 on soil moisture, microbial biomass, or activity suggests that the increase in Rsoil likely reflected increased root and rhizosphere respiration rather than increased microbial decomposition of soil organic matter. This rapid increase in Rsoil suggests that under eCO2, additional photosynthate was produced, transported belowground, and respired. The consequences of this increased belowground activity and whether it is sustained through time in mature ecosystems under eCO2 are a priority for future research.  相似文献   

7.
Upland rice (Oryza sativa L.) was grown at both ambient (350 μmol mol?1) and elevated (700 μmol mol?1) CO2 in either the presence or absence of the root hemi‐parasitic angiosperm Striga hermonthica (Del) Benth. Elevated CO2 alleviated the impact of the parasite on host growth: biomass of infected rice grown at ambient CO2 was 35% that of uninfected, control plants, while at elevated CO2, biomass of infected plants was 73% that of controls. This amelioration occurred despite the fact that O. sativa grown at elevated CO2 supported both greater numbers and a higher biomass of parasites per host than plants grown at ambient CO2. The impact of infection on host leaf area, leaf mass, root mass and reproductive tissue mass was significantly lower in plants grown at elevated as compared with ambient CO2. There were significant CO2 and Striga effects on photosynthetic metabolism and instantaneous water‐use efficiency of O. sativa. The response of photosynthesis to internal [CO2] (A/Ci curves) indicated that, at 45 days after sowing (DAS), prior to emergence of the parasites, uninfected plants grown at elevated CO2 had significantly lower CO2 saturated rates of photosynthesis, carboxylation efficiencies and ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39) contents than uninfected, ambient CO2‐grown O. sativa. In contrast, infection with S. hermonthica prevented down‐regulation of photosynthesis in O. sativa grown at elevated CO2, but had no impact on photosynthesis of hosts grown at ambient CO2. At 76 DAS (after parasites had emerged), however, infected plants grown at both elevated and ambient CO2 had lower carboxylation efficiencies and Rubisco contents than uninfected O. sativa grown at ambient CO2. The reductions in carboxylation efficiency (and Rubisco content) were accompanied by similar reductions in nitrogen concentration of O. sativa leaves, both before and after parasite emergence. There were no significant CO2 or infection effects on the concentrations of soluble sugars in leaves of O. sativa, but starch concentration was significantly lower in infected plants at both CO2 concentrations. These results demonstrate that elevated CO2 concentrations can alleviate the impact of infection with Striga on the growth of C3 hosts such as rice and also that infection can delay the onset of photosynthetic down‐regulation in rice grown at elevated CO2.  相似文献   

8.
The increasing concentration of carbon dioxide in atmosphere is not only a major cause of global warming, but it also adversely affects the ecological diversity of invertebrates. This study was conducted to evaluate the effect of elevated CO2 concentration (ambient, 400 ppm and high, 800 ppm) and Wolbachia (Wolbachia‐infected, W+ and Wolbachia‐uninfected, W?) on Hylyphantes graminicola. The total survival rate, developmental duration, carapace width and length, body weight, sex ratio, net reproductive rate, nutrition content, and enzyme activity in H. graminicola were examined under four treatments: W? 400 ppm, W? 800 ppm, W+ 400 ppm, and W+ 800 ppm. Results showed that Wolbachia‐infected spiders had significantly decreased the total developmental duration. Different instars showed variations up to some extent, but no obvious effect was found under elevated CO2 concentration. Total survival rate, sex ratio, and net reproductive rate were not affected by elevated CO2 concentration or Wolbachia infection. The carapace width of Wolbachia‐uninfected spiders decreased significantly under elevated CO2 concentration, while the width, length and weight were not significantly affected in Wolbachia‐infected spiders reared at ambient CO2 concentration. The levels of protein, specific activities of peroxidase, and amylase were significantly increased under elevated CO2 concentration or Wolbachia‐infected spiders, while the total amino content was only increased in Wolbachia‐infected spiders. Thus, our current finding suggested that elevated CO2 concentration and Wolbachia enhance nutrient contents and enzyme activity of H. graminicola and decrease development duration hence explore the interactive effects of factors which were responsible for reproduction regulation, but it also gives a theoretical direction for spider's protection in such a dynamic environment. Increased activities of enzymes and nutrients caused by Wolbachia infection aids for better survival of H. graminicola under stress.  相似文献   

9.
Changes in chloroplastidic pigments, gas exchange and carbohydrate concentrations were assessed during the rapid initial expansion of C. guianensis leaflet. Leaves at metaphyll stage were tagged and assessments were carried out 14, 17, 20, 23, 27, and 31 days later. Pigments synthesis, distribution and accumulation were uniform among leaflet sections (basal, median and apical). Chlorophyll (Chl) a, Chl b, Chl (a+b), and total carotenoids (Car) concentrations were significantly increased after 27 days from metaphyll, and the most expressive increases were parallel to lower specific leaflet area. Chl a/b was lower on day 14 and it was increased on subsequent days. Negative net photosynthesis rate (P N), and the lowest stomatal conductance (g s) and transpiration (E) were registered on day 14, following significant increases on subsequent days. The Chl (a+b) and Chl a effects on P N were more expressive until day 20. Intercellular to ambient CO2 concentration ratio (C i/C a) was higher on day 14 and lower on subsequent days, and no stomatal limitation to CO2 influx inside leaflets was observed. Leaflet temperature was almost constant (ca. 35°C) during leaflet development. Sucrose and starch concentrations were increased in parallel to increases in P N. Altogether, these results highlight the main physiological changes during C. guianensis leaflet expansion and they should be considered in future experiments focusing on factors affecting P N in this species.  相似文献   

10.
Net photosynthetic rate of yellow upper leaves (UL) of Ligustrum vicaryi was slightly, but not significantly higher than that of green lower leaves (LL). Diurnally, maximum photochemical efficiency of photosystem 2, PS2 (Fv/Fm) of LL did not significantly decline but the UL showed fairly great daily variations. Yield of PS2 of UL showed an enantiomorphous variation to the photosynthetically active radiation and was significantly lower than in the LL. Unlike Fv/Fm, the efficiency of energy conversion in PS2 and both non-photosynthetic and photosynthetic quenching did not differ in UL and LL. Significant differences between UL and LL were found in contents of chlorophyll (Chl) a, b, and carotenoids (Car) and ratios of Chl a/b, Chl b/Chl (a+b), and Car/Chl (a+b). Leaf colour dichotocarpism in L. vicaryi was mainly caused by different photon utilization; sunflecks affected the LL.  相似文献   

11.
KEA3 is a thylakoid membrane localized K+/H+ antiporter that regulates photosynthesis by modulating two components of proton motive force (pmf), the proton gradient (?pH) and the electric potential (?ψ). We identified a mutant allele of KEA3, disturbed proton gradient regulation (dpgr) based on its reduced non‐photochemical quenching (NPQ) in artificial (CO2‐free with low O2) air. This phenotype was enhanced in the mutant backgrounds of PSI cyclic electron transport (pgr5 and crr2‐1). In ambient air, reduced NPQ was observed during induction of photosynthesis in dpgr, the phenotype that was enhanced after overnight dark adaptation. In contrast, the knockout allele of kea3‐1 exhibited a high‐NPQ phenotype during steady state in ambient air. Consistent with this kea3‐1 phenotype in ambient air, the membrane topology of KEA3 indicated a proton efflux from the thylakoid lumen to the stroma. The dpgr heterozygotes showed a semidominant and dominant phenotype in artificial and ambient air, respectively. In dpgr, the protein level of KEA3 was unaffected but the downregulation of its activity was probably disturbed. Our findings suggest that fine regulation of KEA3 activity is necessary for optimizing photosynthesis.  相似文献   

12.
Elevated atmospheric CO2 is known to affect plant–insect herbivore interactions. Elevated CO2 causes leaf nitrogen to decrease, the ostensible cause of herbivore compensatory feeding. CO2 may also affect herbivore consumption by altering chemical defenses via changes in plant hormones. We considered the effects of elevated CO2, in conjunction with soil fertility and damage (simulated herbivory), on glucosinolate concentrations of mustard (Brassica nigra) and collard (B. oleracea var. acephala) and the effects of leaf nitrogen and glucosinolate groups on specialist Pieris rapae consumption. Elevated CO2 affected B. oleracea but not B. nigra glucosinolates; responses to soil fertility and damage were also species‐specific. Soil fertility and damage also affected B. oleracea glucosinolates differently under elevated CO2. Glucosinolates did not affect P. rapae consumption at either CO2 concentration in B. nigra, but had CO2‐specific effects on consumption in B. oleracea. At ambient CO2, leaf nitrogen had strong effects on glucosinolate concentrations and P. rapae consumption but only gluconasturtiin was a feeding stimulant. At elevated CO2, direct effects of leaf nitrogen were weaker, but glucosinolates had stronger effects on consumption. Gluconasturtiin and aliphatic glucosinolates were feeding stimulants and indole glucosinolates were feeding deterrents. These results do not support the compensatory feeding hypothesis as the sole driver of changes in P. rapae consumption under elevated CO2. Support for hormone‐mediated CO2 response (HMCR) was mixed; it explained few treatment effects on constitutive or induced glucosinolates, but did explain patterns in SEMs. Further, the novel feeding deterrent effect of indole glucosinolates under elevated CO2 in B. oleracae underscores the importance of defensive chemistry in CO2 response. We speculate that P. rapae indole glucosinolate detoxification mechanisms may have been overwhelmed under elevated CO2 forcing slowed consumption. Specialists may have to contend with hosts with poorer nutritional quality and more effective chemical defenses under elevated CO2.  相似文献   

13.
A yellow leaf colouration mutant (named ycm) generated from rice T-DNA insertion lines was identified with less grana lamellae and low thylakoid membrane protein contents. At weak irradiance [50 μmol(photon) m−2 s−1], chlorophyll (Chl) contents of ycm were ≈20 % of those of WT and Chl a/b ratios were 3-fold that of wild type (WT). The leaf of ycm showed lower values in the actual photosystem 2 (PS2) efficiency (ΦPS2), photochemical quenching (qP), and the efficiency of excitation capture by open PS2 centres 1 (Fv′/Fm′) than those of WT, except no difference in the maximal efficiency of PS2 photochemistry (Fv/Fm). With progress in irradiance [100 and 200 μmol(photon) m−2 s−1], there was a change in the photosynthetic pigment stoichiometry. In ycm, the increase of total Chl contents and the decrease in Chl a/b ratio were observed. ΦPS2, qP, and Fv′/Fm′ of ycm increased gradually along with the increase of irradiance but still much less than in WT. The increase of xanthophyll ratio [(Z+A)/(V+A+Z)] associated with non-photochemical quenching (qN) was found in ycm which suggested that ycm dissipated excess energy through the turnover of xanthophylls. No significant differences in pigment composition were observed in WT under various irradiances, except Chl a/b ratio that gradually decreased. Hence the ycm mutant developed much more tardily than WT, which was caused by low photon energy utilization independent of irradiance.  相似文献   

14.
Sexual dimorphisms of dioecious plants are important in controlling and maintaining sex ratios under changing climate environments. Yet, little is known about sex-specific responses to elevated CO2 with soil nitrogen (N) deposition. To investigate sex-related physiological and biochemical responses to elevated CO2 with N deposition, Populus cathayana Rehd. was employed as a model species. The cuttings were subjected to two CO2 regimes (350 and 700???mol?mol?1) with two N levels (0 and 5?g?N?m?2?year?1). Our results showed that elevated CO2 and N deposition separately increased the total number of leaves, leaf area (LA), leaf mass, net photosynthetic rate (P n), light saturated photosynthetic rate (P max), chlorophyll a (Chl a), and chlorophyll a to chlorophyll b ratio (Chl a/b) in both males and females of P. cathayana. However, the effects on LA, leaf mass, P n, P max, Chl a and Chl a/b were weakened under the combined treatment of elevated CO2 and N deposition. Males had higher leaf mass, P n, P max, apparent quantum yield (??), carboxylation efficiency (CE), Chl a, Chl a/b, leaf N, and root carbon to N ratio (C/N) than did females under elevated CO2 with N deposition. In contrast to males, females had significantly higher levels of soluble sugars in leaves and greater starch accumulation in roots and stems under the same condition. The results of the present work imply that P. cathayana females are more responsive and suffer from greater negative effects on growth and photosynthetic capacity than do males when grown under elevated CO2 with soil N deposition.  相似文献   

15.
Previous studies indicate that the roots of nonhalophytes showed negative halotropism to salt stress to avoid salt damage. However, halotropism of euhalophytes and their possible reasons are little known. Limonium bicolor, a typical recretohalophyte with multicellular salt glands, was used to study halotropism compared with Arabidopsis thaliana under NaCl, KCl and Na2SO4 stress. The elongation of the roots in L. bicolor was significantly promoted by the appropriate concentrations of NaCl, KCl and Na2SO4, but those of A. thaliana was markedly inhibited. However, isosmotic mannitol with 200?mM NaCl did not affect the root growth of both L. bicolor and A. thaliana. The root activity of both L. bicolor and A. thaliana was enhanced by salts. Compared with K+, Cl, and SO42?, Na+ played a critical role in halotropism of L. bicolor. Furthermore, the gravitropic setpoint angle of L. bicolor increased under NaCl, KCl and Na2SO4 treatments compared with controls, and the phenomenon was most apparent under NaCl treatments. The endogenous IAA content of the NaCl-treated L. bicolor seedlings was significantly higher than that of the controls. These results suggest that the recretohalophyte L. bicolor has positive halotropism and Na+ plays a pivotal role in L. bicolor’s positive root halotropism by regulating IAA.  相似文献   

16.
Soil CO2 efflux (Fsoil) is the largest source of carbon from forests and reflects primary productivity as well as how carbon is allocated within forest ecosystems. Through early stages of stand development, both elevated [CO2] and availability of soil nitrogen (N; sum of mineralization, deposition, and fixation) have been shown to increase gross primary productivity, but the long‐term effects of these factors on Fsoil are less clear. Expanding on previous studies at the Duke Free‐Air CO2 Enrichment (FACE) site, we quantified the effects of elevated [CO2] and N fertilization on Fsoil using daily measurements from automated chambers over 10 years. Consistent with previous results, compared to ambient unfertilized plots, annual Fsoil increased under elevated [CO2] (ca. 17%) and decreased with N (ca. 21%). N fertilization under elevated [CO2] reduced Fsoil to values similar to untreated plots. Over the study period, base respiration rates increased with leaf productivity, but declined after productivity saturated. Despite treatment‐induced differences in aboveground biomass, soil temperature and water content were similar among treatments. Interannually, low soil water content decreased annual Fsoil from potential values – estimated based on temperature alone assuming nonlimiting soil water content – by ca. 0.7% per 1.0% reduction in relative extractable water. This effect was only slightly ameliorated by elevated [CO2]. Variability in soil N availability among plots accounted for the spatial variability in Fsoil, showing a decrease of ca. 114 g C m?2 yr?1 per 1 g m?2 increase in soil N availability, with consistently higher Fsoil in elevated [CO2] plots ca. 127 g C per 100 ppm [CO2] over the +200 ppm enrichment. Altogether, reflecting increased belowground carbon partitioning in response to greater plant nutritional needs, the effects of elevated [CO2] and N fertilization on Fsoil in this stand are sustained beyond the early stages of stand development and through stabilization of annual foliage production.  相似文献   

17.
Terry N 《Plant physiology》1980,65(1):114-120
The possibility of using Fe stress as an experimental tool in the study of limiting factors was explored. Results show that Fe stress decreased the chlorophyll (Chl) a, Chl b, carotene, and xanthophyll content of leaves of sugar beets (Beta vulgaris L.) and that the maximum rate of photosynthetic CO2 uptake (Pmax) per unit area was linearly related to Chl (a + b) per unit area. Measurements of noncyclic ATP formation by isolated chloroplasts at light saturation indicate that photosynthetic electron transport capacity decreased concomitantly with pigment content under Fe stress.  相似文献   

18.
Differences in acclimation to elevated growth CO2 (700 μmol mol−1, EC) and elevated temperature (ambient +4 °C, ET) in successive leaves of wheat were investigated in field chambers. At a common measurement CO2, EC increased photosynthesis and the quantum yield of electron transport (Φ) early on in the growth of penultimate leaves, and later decreased them. In contrast, EC did not change photosynthesis, and increased Φ at later growth stages in the flag leaf. Contents of chlorophyll (Chl), ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO), and total soluble protein were initially higher and subsequently lower in penultimate than flag leaves. EC decreased RuBPCO protein content relative to soluble protein and Chl contents throughout the development of penultimate leaves. On the other hand, EC initially increased the RuBPCO:Chl and Chl a/b ratios, but later decreased them in flag leaves. In the flag leaves but not in the penultimate leaves, ET initially decreased initial and specific RuBPCO activities at ambient CO2 (AC) and increased them at EC. Late in leaf growth, ET decreased Chl contents under AC in both kinds of leaves, and had no effect or a positive one under EC. Thus the differences between the two kinds of leaves were due to resource availability, and to EC-increased allocation of resources to photon harvesting in the penultimate leaves, but to increased allocation to carboxylation early on in growth, and to light harvesting subsequently, in the flag leaves.  相似文献   

19.
We investigated fungal species-specific responses of ectomycorrhizal (ECM) Scots pine (Pinus sylvestris) seedlings on growth and nutrient acquisition together with mycelial development under ambient and elevated CO2. Each seedling was associated with one of the following ECM species: Hebeloma cylindrosporum, Laccaria bicolor, Suillus bovinus, S. luteus, Piloderma croceum, Paxillus involutus, Boletus badius, or non-mycorrhizal, under ambient, and elevated CO2 (350 or 700 μl l−1 CO2); each treatment contained six replicates. The trial lasted 156 days. During the final 28 days, the seedlings were labeled with 14CO2. We measured hyphal length, plant biomass, 14C allocation, and plant nitrogen and phosphorus concentration. Almost all parameters were significantly affected by fungal species and/or CO2. There were very few significant interactions. Elevated CO2 decreased shoot-to-root ratio, most strongly so in species with the largest extraradical mycelium. Under elevated CO2, ECM root growth increased significantly more than hyphal growth. Extraradical hyphal length was significantly negatively correlated with shoot biomass, shoot N content, and total plant N uptake. Root dry weight was significantly negatively correlated with root N and P concentration. Fungal sink strength for N strongly affected plant growth through N immobilization. Mycorrhizal fungal-induced progressive nitrogen limitation (PNL) has the potential to generate negative feedback with plant growth under elevated CO2. Responsible Editor: Herbert Johannes Kronzucker  相似文献   

20.
Wang  K.-Y.  Kellomäki  S.  Zha  T. 《Photosynthetica》2003,41(2):167-175
Changes in pigment composition and chlorophyll (Chl) fluorescence parameters were studied in 20 year-old Scots pine (Pinus sylvestris L.) trees grown in environment-controlled chambers and subjected to ambient conditions (CON), doubled ambient CO2 concentration (EC), elevated temperature (ambient +2−6 °C, ET), or a combination of EC and ET (ECT) for four years. EC did not significantly alter the optimal photochemical efficiency of photosystem 2 (PS2; Fv/Fm), or Chl a+b content during the main growth season (days 150–240) but it reduced Fv/Fm and the Chl a+b content and increased the ratio of total carotenoids to Chl a+b during the ‘off season’. By contrast, ET significantly enhanced the efficiency of PS2 in terms of increases in Fv/Fm and Chl a+b content throughout the year, but with more pronounced enhancement in the ‘off season’. The reduction in Fv/Fm during autumn could be associated with the CO2-induced earlier yellowing of the leaves, whereas the temperature-stimulated increase in the photochemical efficiency of PS2 during the ‘off season’ could be attributed to the maintenance of a high sink capacity. The pigment and fluorescence responses in the case of ECT showed a similar pattern to that for ET, implying the importance of the temperature factor in future climate changes in the boreal zone. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号