共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
A system of transposon mutagenesis for bacteriophage T4 总被引:1,自引:0,他引:1
We have developed a system of transposon mutagenesis for bacteriophage T4. The transposon is a plasmid derivative of Tn5 which contains the essential T4 gene 24, permitting a direct selection for transposition events into a gene 24-deleted phage. The transposition occurred at a frequency of only 10(-7) per progeny phage, even though a dam- host was used to increase transposition frequency. Phage strains with a transposon insert were distinguished from most pseudorevertants of the gene 24 deletion by plaque hybridization using a transposon-specific probe. Mapping analysis showed that the transposon inserts into a large number of sites in the T4 genome, probably with a preference for certain regions. The transposon insertions in four strains were analysed by DNA sequencing using primers that hybridize to each end of the transposon and read out into the T4 genome. In each case, a 9 bp T4 target sequence had been duplicated and the insertions had occurred exactly at the IS50 ends of the transposon, demonstrating that bona fide transposition had occurred. Finally, the transposon insert strains were screened on the TabG Escherichia coli strain, which inhibits the growth of T4 motA mutants, and a motA transposon insert strain was found. 相似文献
4.
5.
Recombinational repair of double-strand breaks in tandemly repeated sequences often results in the loss of one or more copies of the repeat. The single-strand annealing (SSA) model for repair has been proposed to account for this nonconservative recombination. In this study we present a plasmid-based physical assay that measures SSA during bacteriophage T4 infection and apply this assay to the genetic analysis of break repair. SSA occurs readily in broken plasmid DNA and is independent of the strand exchange protein UvsX and its accessory factor UvsY. We use the unique features of T4 DNA metabolism to examine the link between SSA repair and DNA replication and demonstrate directly that the DNA polymerase and the major replicative helicase of the phage are not required for SSA repair. We also show that the Escherichia coli RecBCD enzyme can mediate the degradation of broken DNA during early, but not late, times of infection. Finally, we consider the status of broken ends during the course of the infection and propose a model for SSA during T4 infections. 相似文献
6.
7.
8.
Most of the intracellular T4 DNA made in the presence of 9-aminoacridine is of lower molecular weight than mature T4 DNA and does not get packaged into phage particles. Using a T4 DNA transformation assay, we have examined this intracellular T4 DNA for its content of 9-aminoacridine-induced revertants of certain rII gene frameshift mutations. The proportion of acridine-induced revertants in the intracellular DNA population is close to that found in the phage progency made in the presence of 9-aminoacridine. Thus, the generation of low molecular weight T4 DNA in the presence of 9-aminoacridine is not, in itself, also a mutagenic process. 相似文献
9.
We have undertaken an initial characterization of frameshift mutagenesis in bacteriophage T7 and have identified a subset of very low reversion frameshift mutations in the T7 ligase gene (gene 1.3). We used this information to construct bacteriophage T7 strains that contain one extra or one less base pair in gene 1.3 such that a frameshift event restores the reading frame of that gene. These events can be quantified and the frameshift mutation isolated within a localized region of the ligase gene. We have also identified a portion of the T7 ligase protein that will accept tracts of nonsense amino acids yet still give a ligase positive phenotype. This allows flexibility in the design of the target DNA sequence with which to study frameshift mutagenesis. These assays for frameshift mutagenesis performed in E. coli cells infected with the appropriate T7 strain, were used to measure the frequency of both plus and minus frameshifts in vivo. 相似文献
10.
As in the induction of r mutants in bacteriophage T4 by gamma-rays, the radiation-induced reversion of T4 amber mutants to wild-type was found to depend on the product of the DNA-repair gene x of the phage. Neither the efficiency of induction of r mutants nor the efficiency of reversion of ambers was enhanced by the presence of oxygen during irradiation. T4 differed in this respect from phage T7, for which no indication has been found that gamma-ray mutagenesis results from error-prone repair of DNA damage. Notwithstanding the substantial contribution of misrepair to mutation induction in T4, the efficiency of induction per base-pair observed for irradiation under oxygen was lower than that found previously for T7. 相似文献
11.
Ultraviolet mutagenesis in bacteriophage T4. II. Photoreversal of mutational lesions 总被引:1,自引:0,他引:1
J W Drake 《Journal of bacteriology》1966,92(1):144-147
Drake, John W. (University of Illinois, Urbana). Ultraviolet mutagenesis in bacteriophage T4. II. Photoreversal of mutational lesions. J. Bacteriol. 92:144-147. 1966.-T4r mutations were induced by ultraviolet irradiation of extracellular phage particles, using a phage mutant, v, which is particularly susceptible to photoreactivation. Most of the induced r mutations could be subsequently photoreversed intracellularly with white light. Ultraviolet irradiation induces both transitions and sign mutations, and both were susceptible to photoreversal. The results suggest that two very different types of mutational lesions may arise from a common type of photochemical lesion. 相似文献
12.
The frequency of spontaneous reversion in r-mutants of phage T4 is determined in order to study the influence of mutant RNA polymerase on the level of spontaneous mutations in phage T4. The rate of spontaneous mutagenesis in the phage is found to be increased in strains with mutant RNA polymerase. 相似文献
13.
14.
An increased rate of mutagenesis of phage T4 by base analogues was observed in Escherichia coli strains resistant to both rifampicin and streptolydigin and shown to have defective RNA polymerase. The results suggest that RNA polymerase may be involved in the production of mutations by errors of replication. 相似文献
15.
We have determined the nucleotide sequence of a region of 656 nucleotides comprising the 31 gene of bacteriophage T4. The coding region consisted of 333 nucleotides directing the synthesis of a polypeptide of 111 amino acids, with a calculated molecular weight of 12,060. The upstream sequence contains the consensus sequences for T4 early and two middle promoters. The downstream sequence contains the consensus sequence for T4 late promoter and the inverted repeats. In addition, there are two incomplete open reading frames in the sequenced region. 相似文献
16.
17.
Heat mutagenesis in bacteriophage T4: another walk down the transversion pathway. 总被引:2,自引:0,他引:2
下载免费PDF全文

Extracellular nonreplicating bacteriophage T4 particles accumulate mutations as functions of temperature, time, pH, and ionic environment via two mechanisms: 5-hydroxymethylcytidine deamination produces G.C----A.T transitions while a guanosine modification produces transversions. Neither frameshift mutations nor mutations at A.T base pairs are appreciably induced. We now show that heat induces G.C----T.A transversions which we suggest may arise via a G*.A mispair, in which G* is a modified guanosine that has experienced a glycosylic bond migration. The rate of this reaction at 37 degrees C is sufficient to present a genetic hazard, particularly to large genomes; thus, the lesion is probably efficiently repaired in cellular genomes. 相似文献
18.
19.
20.