首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Vedler E  Kõiv V  Heinaru A 《Gene》2000,255(2):281-288
The 2,4-dichlorophenoxyacetic acid (2,4-D)-degradative bacterium Achromobacter xylosoxidans subsp. denitrificans strain EST4002, isolated in Estonia more than 10years ago, was found to contain the 70kb plasmid pEST4011 that is responsible for the bacterium having had obtained a stable 2,4-D(+) phenotype. The tfd-like genes for 2, 4-D degradation of the strain EST4002 were located on a 10.5kb region of pEST4011, but without functional genes coding for chloromuconate cycloisomerase and chlorodienelactone hydrolase. The latter two genes are probably encoded by homologous, tcb-like genes, located elsewhere on pEST4011. We also present evidence of two copies of insertion element IS1071-like sequences on pEST4011. IS1071 is a class II (Tn3 family) insertion element, associated with different catabolic genes and operons and globally distributed in the recent past. We speculate that this insertion element might have had a role in the formation of plasmid pEST4011. The 28kb plasmid pEST4012 is generated by deletion from pEST4011 when cells of A. xylosoxidans EST4002 are grown in the absence of 2,4-D in growth medium. We propose that this is the result of homologous recombination between the two putative copies of IS1071-like sequences on pEST4011.  相似文献   

2.
The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D)-degrading bacterium Achromobacter xylosoxidans subsp. denitrificans strain EST4002 contains plasmid pEST4011. This plasmid ensures its host a stable 2,4-D(+) phenotype. We determined the complete 76,958-bp nucleotide sequence of pEST4011. This plasmid is a deletion and duplication derivative of pD2M4, the 95-kb highly unstable laboratory ancestor of pEST4011, and was self-generated during different laboratory manipulations performed to increase the stability of the 2,4-D(+) phenotype of the original strain, strain D2M4(pD2M4). The 47,935-bp catabolic region of pEST4011 forms a transposon-like structure with identical copies of the hybrid insertion element IS1071::IS1471 at the two ends. The catabolic regions of pEST4011 and pJP4, the best-studied 2,4-D-degradative plasmid, both contain homologous, tfd-like genes for complete 2,4-D degradation, but they have little sequence similarity other than that. The backbone genes of pEST4011 are most similar to the corresponding genes of broad-host-range self-transmissible IncP1 plasmids. The backbones of the other three IncP1 catabolic plasmids that have been sequenced (the 2,4-D-degradative plasmid pJP4, the haloacetate-catabolic plasmid pUO1, and the atrazine-catabolic plasmid pADP-1) are nearly identical to the backbone of R751, the archetype plasmid of the IncP1 beta subgroup. We show that despite the overall similarity in plasmid organization, the pEST4011 backbone is sufficiently different (51 to 86% amino acid sequence identity between individual backbone genes) from the backbones of members of the three IncP1 subgroups (the alpha, beta, and gamma subgroups) that it belongs to a new IncP1subgroup, the delta subgroup. This conclusion was also supported by a phylogenetic analysis of the trfA2, korA, and traG gene products of different IncP1 plasmids.  相似文献   

3.
The 2-methyl-4-chlorophenoxyacetic (MCPA) acid-degrader Sphingomonas sp. ERG5 has recently been isolated from MCPA-degrading bacterial communities. Using Illumina-sequencing, the 5.7 Mb genome of this isolate was sequenced in this study, revealing the 138 kbp plasmid pCADAB1 harboring the 32.5 kbp composite transposon Tn6228 which contains genes encoding proteins for the removal of 2,4-dichlorophenoxyacetic acid (2,4-D) and MCPA, as well as the regulation of this pathway. Transposon Tn6228 was confirmed by PCR to be situated on the plasmid and also exist in a circular intermediate state - typical of IS3 elements. The canonical tfdAα-gene of group III 2,4-D degraders, encoding the first step in degradation of 2,4-D and related compounds, was not present in the chromosomal contigs. However, the alternative cadAB genes, also providing the initial degradation step, were found in Tn6228, along with the 2,4-D-degradation-associated genes tfdBCDEFKR and cadR. Putative reductase and ferredoxin genes cadCD of Rieske non-heme iron oxygenases were also present in close proximity to cadAB, suggesting that these might have an unknown role in the initial degradation reaction. Parts of the composite transposon contain sequence displaying high similarity to previously analyzed 2,4-D degradation genes, suggesting rapid dissemination and high conservation of the chlorinated-phenoxyacetic acid (PAA)-degradation genotype among the sphingomonads.  相似文献   

4.
The two haloacetate dehalogenase genes, dehH1 and dehH2, on the 65-kb plasmid pUO1 from Delftia acidovorans strain B were found to be located on transposable elements. The dehH2 gene was carried on an 8.9-kb class I composite transposon (TnHad1) that was flanked by two directly repeated copies of IS1071, IS1071L and IS1071R. The dehH1 gene was also flanked by IS1071L and a truncated version of IS1071 (IS1071N). TnHad1, dehH1, and IS1071N were located on a 15.6-kb class II transposon (TnHad2) whose terminal inverted repeats and res site showed high homology with those of the Tn21-related transposons. TnHad2 was defective in transposition because of its lacking the transposase and resolvase genes. TnHad2 could transpose when the Tn21-encoded transposase and resolvase were supplied in trans. These results demonstrated that Tn Had2 is a defective Tn21-related transposon carrying another class I catabolic transposon.  相似文献   

5.
6.
M S Wood  C Lory    T G Lessie 《Journal of bacteriology》1990,172(4):1719-1724
We have identified three transposable gene-activating elements from Pseudomonas cepacia on the basis of their abilities to increase expression of the lac genes of the broad-host-range plasmid pGC91.14 (pRP1::Tn951). When introduced into auxotrophic derivatives of P. cepacia 249 (ATCC 17616), this plasmid failed to confer the ability to utilize lactose. The lac genes of Tn951 were poorly expressed in P. cepacia and were not induced by isopropyl-beta-D-thiogalactopyranoside. Lac+ variants of the pGC91.14-containing strains which formed beta-galactosidase at high constitutive levels as a consequence of transposition of insertion sequences from the P. cepacia genome to sites upstream of the lacZ gene of Tn951 were isolated. Certain of the elements also increased gene expression in other bacteria. For example, IS407 strongly activated the lacZ gene of Tn951 in Pseudomonas aeruginosa and Escherichia coli, and IS406 (but not IS407) did so in Zymomonas mobilis. The results indicate that IS elements from P. cepacia have potential for turning on the expression of foreign genes in a variety of gram-negative bacteria.  相似文献   

7.
8.
9.
Tn602: A naturally occurring relative of Tn903 with direct repeats   总被引:2,自引:0,他引:2  
We report the characterization of Tn602, a transposon encoding resistance to kanamycin and related aminoglycosides present on the R-plasmid pGD10. Tn602 is highly homologous to the previously characterized Tn903, present on the R-plasmid R6, in that it consists of a gene for aminoglycoside-phosphotransferase-3'-I (homologous to that of Tn903) flanked by copies of an IS-element homologous to IS903. Tn602 differs from Tn903 in the following respects: the flanking IS-elements (IS602) are in direct rather than inverted orientation as in Tn903; the fusion points between the IS-elements and the central region are different from those in Tn903; and several sequence changes, detected by the loss and acquisition of restriction sites, show the two repeats of IS602 to be nonidentical and different from IS903, IS102, and IS903.B. These structural details suggest that Tn602 and Tn903 evolved separately from related modules.  相似文献   

10.
The occurrence of strA-strB streptomycin-resistance genes within transposon Tn5393 was examined in Pseudomonas syringae pv. actinidiae, P. syringae pv. syringae, and P. marginalis, isolated from kiwifruit plants in Korea and Japan. PCR amplification with primers specific to strA-strB revealed that three of the tested Pseudomonas species harbored these genes for a streptomycin-resistance determinant. Tn5393, containing strA-strB, was also identified with PCR primers designed to amplify parts of tnpA, res, and tnpR. No IS elements were detected within tnpR, nor were they found in the intergenic region between tnpR and strA. Nucleotide sequence analysis indicated that the strA sequence of P. syringae pv. actinidiae contained a single nucleotide alteration at position 593 (CAA-->CGA), as compared to Tn5393a in P. syringae pv. syringae. This resulted in an amino acid change, from Gln to Arg.  相似文献   

11.
A strain of Variovorax paradoxus degrading 2,4-dichlorophenoxyacetic acid (2,4-D) was isolated from the Dijon area (France) using continuous chemostat culture. This strain, designated TV1, grew on up to 5 mM 2,4-D and efficiently degraded the herbicide as sole carbon source as well as in presence of soil extracts. It also degraded phenol and 2-methyl, 4-chlorophenoxyacetic acid at 3 mM and 2,4-dichlorophenol at 1 mM. This organism contained a stable 200 kb plasmid, designated pTV1, which showed no similarity in its restriction pattern with the archetypal 2,4-D catabolic plasmid pJP4. However, pTV1 contained an 11 kb BamHI fragment which hybridized at low stringency with the 2,4-D degradative genes tfdA, tfdB and tfdR from pJP4. PTV1 partial tfdA sequence showed 77 % similarity with the archetypal tfdA gene sequence from Ralstonia eutropha JMP134. Tn5 mutagenesis confirmed the involvement of this gene in the 2,4-D catabolic pathway. © Rapid Science Ltd. 1998  相似文献   

12.
Pseudomonas syringae pv. tomato DC3481, a Tn5-induced mutant of the tomato pathogen DC3000, cannot grow and elicit disease symptoms on tomato seedlings. It also cannot grow on minimal medium containing malate, citrate, or succinate, three of the major organic acids found in tomatoes. We report here that this mutant also cannot use, as a sole carbon and/or energy source, a wide variety of hexoses and intermediates of hexose catabolism. Uptake studies have shown that DC3481 is not deficient in transport. A 3.8-kb EcoRI fragment of DC3000 DNA, which complements the Tn5 mutation, has been cloned and sequenced. The deduced amino acid sequences of two of the three open reading frames (ORFs) present on this fragment, ORF2 and ORF3, had no significant homology with sequences in the GenBank databases. However, the 510-amino-acid sequence of ORF1, the site of the Tn5 insertion, strongly resembled the deduced amino acid sequences of the Bacillus subtilis and Zea mays genes encoding 2,3-diphosphoglycerate (DPG)-independent phosphoglyceromutase (PGM) (52% identity and 72% similarity and 37% identity and 57% similarity, respectively). PGMs not requiring the cofactor DPG are usually found in plants and algae. Enzyme assays confirmed that P. syringae PGM activity required an intact ORF1. Not only is DC3481 the first PGM-deficient pseudomonad mutant to be described, but the P. syringae pgm gene is the first gram-negative bacterial gene identified that appears to code for a DPG-independent PGM. PGM activity appears essential for the growth and pathogenicity of P. syringae pv. tomato on its host plant.  相似文献   

13.
14.
In Alcaligenes eutrophus JMP134, pJP4 carries the genes coding for 2,4-dichlorophenoxyacetate (2,4-D) and 3-chlorobenzoate (3-Cba) degradation plus mercury resistance. The plasmid genes specifying 2,4-D and 3-Cba catabolism are organized in three operons: tfdA, tfdB, and tfdCDEF. Regulation of these operons by two unlinked genes, tfdR and tfdS, has been proposed. Physical and DNA sequence analyses revealed that the tfdR and tfdS genes were identical and were located within a longer inverted repeat of 1592bp. Similar stem-loop structures were observed among other 2,4-D plasmids. The tfdR gene is 888 bp long and capable of encoding a polypeptide of 32kDa. The deduced amino acid sequence of tfdR indicates that it is a member of the LysR-type activators. Investigation of the regulation of the catabolic gene clusters through the construction of a pJP4 defined deletion mutant, pYG1010, which lacks a 4.2 kilobase Xbal fragment containing the inverted repeat region carrying the tfdR and tfdS regulatory genes, showed that Pseudomonas cepacia strains containing pYG1010 became 2,4-D negative, but 3-Cba positive. In vivo recombinants of pYG1010 and a cloned tfdS gene rescued the 2,4-D phenotype, indicating that TfdS is a positive regulator of tfdA expression, but not for tfdCDEF expression.  相似文献   

15.
A chlorobenzoate-catabolic transposon (Tn5271) was introduced on a conjugative plasmid (pBRC60) in the natural host, Alcaligenes sp. strain BR60, into lake water and sediment flowthrough microcosms. Experimental microcosms were exposed to micromolar levels of 3-chlorobenzoate, 4-chloroaniline, 2,4-dichlorophenoxyacetate, or 3-chlorobiphenyl. The populations of the host, BR60, and organisms carrying Tn5271 were monitored over a 100-day period by use of selective plate counts and the most-probable-number-DNA hybridization method. Populations of Tn5271-carrying bacteria were significantly higher in microcosms dosed with 3-chlorobenzoate, 4-chloroaniline, and 3-chlorobiphenyl than in the control microcosms, indicating that each of these chemicals exerts a selective force on this particular genotype in natural systems. The rates of 3-chlorobenzoate uptake and respiration correlated with Tn5271-carrying populations, as did the rates of 4-chloroaniline uptake and respiration. Plasmid transfer in the 3-chlorobenzoate- and 3-chlorobiphenyl-dosed microcosms resulted in the selection of three phenotypic clusters of chlorobenzoate degraders, only one of which was closely related to the original pBRC60 (Tn5271) donor, Alcaligenes sp. strain BR60. Bacteria dominating 4-chloroaniline-dosed microcosms carried IS1071, the class II insertion sequence that brackets Tn5271, on a plasmid unrelated to pBRC60. The importance of plasmid transfer and transposition during chemical adaptation is discussed.  相似文献   

16.
C C Chu  A J Clark 《Plasmid》1989,22(3):260-264
The composite transposable element Tn5, which is made up of two inverted IS50 elements surrounding genes encoding drug resistance, generally generates 9-bp duplications at the site of insertion. In our studies of three Tn5 insertion mutants at one location in the Escherichia coli chromosome, we have observed that one contains a duplication of 10 bp, while the other two have the usual 9-bp duplication. Three other insertion elements, IS1, IS4, and IS186, give variable-sized target site sequence duplications. We observed a similarity of amino acid sequence in a small region of the putative transposases among IS4, IS186, and Tn5 suggesting a conservation of function in this group of transposases.  相似文献   

17.
Chloride channel proteins (ClC) are found in living systems where they transport chloride ions across cell membranes. Recently, the structure/function of two prokaryotic ClC has been determined but little is known about the role of these proteins in the microbial metabolism of chlorinated compounds. Here we show that transposon Tn5530 from Burkholderia cepacia strain 2a encodes a ClC protein (BcClC) which is responsible for expelling Cl(-) ions generated during the catabolism of 2,4-dichlorophenoxyacetic acid (a chlorinated herbicide). We found that BcClC has the ability to transport Cl(-) ions across reconstituted proteoliposome membranes. We created two mutants in which the intrachannel glutamate residue of the protein, known to be responsible for opening and closing the channel (i.e. gating), was changed in order to create constitutively open and closed forms. We observed that cells carrying the closed-channel protein accumulated Cl(-) ions intracellularly leading to a decrease in intracellular pH, cell stasis and death. Further, we established that BcClC has the same gating mechanism as that reported for the ClC protein from Salmonella typhimurium. Our results show that the physiological role of ClC is to maintain cellular homeostasis which can be impaired by the catabolism of chlorinated compounds.  相似文献   

18.
Various xenobiotic-degrading genes on many catabolic plasmids are often flanked by two copies of an insertion sequence, IS1071. This 3.2-kb IS element has long (110-bp) terminal inverted repeats (IRs) and a transposase gene that are phylogenetically related to those of the class II transposons. However, the transposition mechanism of IS1071 has remained unclear. Our study revealed that IS1071 was only able to transpose at high frequencies in two environmental beta-proteobacterial strains, Comamonas testosteroni and Delftia acidovorans, and not in any of the bacteria examined which belong to the alpha- and gamma-proteobacteria. IS1071 was found to have the functional features of the class II transposons in that (i) the final product of the IS1071 transposition was a cointegrate of its donor and target DNA molecules connected by two directly repeated copies of IS1071, one at each junction; (ii) a 5-bp duplication of the target sequence was observed at the insertion site; and (iii) a tnpA mutation of IS1071 was efficiently complemented by supplying the wild-type tnpA gene in trans. Deletion analysis of the IS1071 IR sequences indicated that nearly the entire region of the IRs was required for its transposition, suggesting that the interaction between the transposase and IRs of IS1071 might be different from that of the other well-characterized class II transposons.  相似文献   

19.
A Hung  R Pictet 《FEBS letters》1989,245(1-2):57-60
The regulatory regions of the tetracycline genes present in pBR322 (pSC101) and in the transposon Tn10 are compared. They show a low degree of nucleotide sequence similarity but a high level of structure similarity. Furthermore, analyses of RNAs transcribed in the opposite direction of the pBR322 tet gene show that there are two mRNA initiation sites separated by 29 nucleotides. This suggests the existence of two promoters for the tet repressor gene in Tn10. These features reveal a strong resemblance of the mode of regulation between the tet operons of Tn10 and pSC101.  相似文献   

20.
The 2,4-dichlorophenoxyacetic acid (2,4-D) degrading bacterium, Burkholderia cepacia (formerly Pseudomonas cepacia) DBO1(pRO101) was coated on non-sterile barley (Hordeum vulgare) seeds, which were planted in two non-sterile soils amended with varying amounts of 2,4-D herbicide. In the presence of 10 or 100 mg 2,4-D per kg soil B. cepacia DBO1(pRO101) readily colonized the root at densities up to 107 CFU per cm root. In soil without 2,4-D the bacterium showed weak root colonization. The seeds coated with B. cepacia DBO1(pRO101) were able to germinate and grow in soils containing 10 or 100 mg kg–1 2,4-D, while non-coated seeds either did not germinate or quickly withered after germination. The results suggest that colonization of the plant roots by the herbicide-degrading B. cepacia DBO1(pRO101) can protect the plant by degradation of the herbicide in the rhizosphere soil. The study shows that the ability to degrade certain pesticides should be considered, when searching for potential plant growth-promoting rhizobacteria. The role of root colonization by xenobiotic degrading bacteria is further discussed in relation to bioremediation of contaminated soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号