首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
Neutron spin-echo spectroscopy was used to study structural fluctuations that occur in hemoglobin (Hb) and myoglobin (Mb) in solution. Using neutron spin-echo data up to a very high momentum transfer q (∼ 0.62 Å 1), we characterized the internal dynamics of these proteins at the levels of dynamic pair correlation function and self-correlation function in the time range of several picoseconds to a few nanoseconds. In the same protein solution, data transition from pair correlation motion to self-correlation motion as the momentum transfer q increases. At low q, coherent scattering dominates; at high q, observations are largely due to incoherent scattering. The low q data were interpreted in terms of an effective diffusion coefficient; on the other hand, the high q data were interpreted in terms of mean square displacements. Comparison of data from the two homologous proteins collected at different temperatures and protein concentrations was used to assess the contributions made by translational and rotational diffusion and internal modes of motion to the data. The temperature dependence of decay times can be attributed to changes in the viscosity and temperature of the solvent, as predicted by the Stokes-Einstein relationship. This is true for contributions from both diffusive and internal modes of motion, indicating an intimate relationship between the internal dynamics of the proteins and the viscosity of the solvent. Viscosity change associated with protein concentration can account for changes in diffusion observed at different concentrations, but is apparently not the only factor involved in the changes in internal dynamics observed with change in protein concentration. Data collected at high q indicate that internal modes in Mb are generally faster than those in Hb, perhaps due to the greater surface-to-volume ratio of Mb and the fact that surface groups tend to exhibit faster motion than buried groups. Comparison of data from Hb and data from Mb at low q indicates an unexpectedly rapid motion of Hb αβ dimers relative to one another. Dynamic motion of subunits is increasingly perceived as important to the allosteric behavior of Hb. Our data demonstrate that this motion is highly sensitive to protein concentration, temperature, and solvent viscosity, indicating that great care needs to be exercised in interpreting its effect on protein function.  相似文献   

2.
Lin PC  Kreutzer U  Jue T 《Biophysical journal》2007,92(7):2608-2620
Pulsed field gradient NMR methods have determined the temperature-dependent diffusion of myoglobin (Mb) in perfused rat myocardium. Mb diffuses with an averaged translational diffusion coefficient (DMb) of 4.24-8.37x10(-7)cm2/s from 22 degrees C to 40 degrees C and shows no orientation preference over a root mean-square displacement of 2.5-3.5 microm. The DMb agrees with the value predicted by rotational diffusion measurements. Based on the DMb, the equipoise diffusion PO2, the PO2 in which Mb-facilitated and free O2 diffusion contribute equally to the O2 flux, varies from 2.72 to 0.15 in myocardium and from 7.27 to 4.24 mmHg in skeletal muscle. Given the basal PO2 of approximately 10 mmHg, the Mb contribution to O2 transport appears insignificant in myocardium. In skeletal muscle, Mb-facilitated diffusion begins to contribute significantly only when the PO2 approaches the P50. In marine mammals, the high Mb concentration confers a predominant role for Mb in intracellular O2 transport under all physiological conditions. The Q10 of the DMb ranges from 1.3 to 1.6. The Mb diffusion data indicate that the postulated gel network in the cell must have a minimum percolation cutoff size exceeding 17.5 A and does not impose tortuosity within the diffusion root mean-square displacement. Moreover, the similar Q10 for the DMb of solution versus cell Mb suggests that any temperature-dependent alteration of the postulated cell matrix does not significantly affect protein mobility.  相似文献   

3.
Cell signaling pathways rely on phosphotransfer reactions that are catalyzed by protein kinases. The protein kinases themselves are typically regulated by phosphorylation and concurrent structural rearrangements, both near the catalytic site and elsewhere. Thus, physiological function requires posttranslational modification and deformable structures. A prototypical example is provided by cyclic AMP-dependent protein kinase (PKA). It is activated by phosphorylation, is inhomogeneously phosphorylated when expressed in bacteria, and exhibits a wide range of dynamic properties. Here we use (31)P nuclear magnetic resonance (NMR) spectroscopy to characterize the phosphorylation states and to estimate the flexibility of the phosphorylation sites of 2-, 3-, and 4-fold phosphorylated PKA. The phosphorylation sites Ser10, Ser139, Thr197, and Ser338 are assigned to individual NMR resonances, assisted by complexation with AMP-PNP and dephosphorylation with alkaline phosphatase. Rotational diffusion correlation times estimated from resonance line widths show progressively increasing flexibilities for phosphothreonine 197, phosphoserines 139 and 338, and disorder at phosphoserine 10, consistent with crystal structures of PKA. However, because the apparent rotational diffusion correlation time fitted for phosphothreonine 197 of the activation loop is longer than the overall PKA rotational diffusion time, microsecond to millisecond time scale conformational exchange effects involving motions of phosphothreonine 197 are probable. These may represent "open"-"closed" transitions of the uncomplexed protein in solution. These data represent direct measurements of flexibilities also associated with functional properties, such as ATP binding and membrane association, and illustrate the applicability of (31)P NMR for functional and dynamic characterization of protein kinase phosphorylation sites.  相似文献   

4.
The biological activity of luteinizing hormone (LH) receptors can be affected by modifications to the receptor's amino acid sequence or by binding of hormone antagonists such as deglycosylated hCG. Here we have compared rotational diffusion of LH receptors capable of activating adenylate cyclase with that of non-functional hormone-occupied receptors at 4 degrees C and 37 degrees C using time-resolved phosphorescence anisotropy techniques. Binding of hCG to the rat wild-type receptor expressed on 293 cells (LHR-wt cells) or to the LH receptor on MA-10 cells produces functional receptors which exhibit rotational correlation times longer than 1000 micros. However, modification of the LH receptor by substitution of Lys583-->Arg (LHR-K583R) results in a receptor that is non-functional and which has a significantly shorter rotational correlation time of 130+/-12 micros following binding of hCG. When these receptors are treated with deglycosylated hCG, an inactive form of hCG, the rotational correlation times for the LH receptors on LHR-wt and MA-10 cells are also shorter, namely 64+/-8 and 76+/-14 micros, respectively. Finally, a biologically active truncated form of the rat LH receptor expressed in 293 cells (LHR-t631) has slow rotational diffusion, greater than 1000 micros, when occupied by hCG and a significantly shorter rotational correlation time of 103+/-12 micros when occupied by deglycosylated hCG. The effects of rat LH binding to LH receptors on these various cell lines were similar to those of hCG although the magnitude of the changes in receptor rotational diffusion were less pronounced. We suggest that functional LH receptors are present in membrane complexes that exhibit slow rotational diffusion or are rotationally immobile. Shorter rotational correlation times for non-functional hormone-receptor complexes may reflect the absence of essential interactions between these complexes and other membrane proteins.  相似文献   

5.
The self-association of human growth hormone(hGH) was investigated using 15N NMR relaxation.The investigation relies on the 15N R1 and R2 relaxation rates and the heteronuclear{1H}-15N NOEs of the backbone amide groups at multiple protein concentrations. It is shown that the rotational correlation time of hGH in solution depends strongly on its concentration, indicating a significant degree of self-association.The self-association is reversible and the monomers in the aggregates are noncovalently linked. Extrapolation of the relaxation data to zero concentration predicts a correlation time of 13.4 ns and a rotational diffusion anisotropy of 1.26 for monomeric hGH, in agreement with the rotational diffusion properties estimated by hydrodynamic calculations. Moreover, the extrapolation allows characterization of the backbone dynamics of monomeric hGH without interference from self-association phenomena, and it is found that hGH is considerably more flexible than originally thought. A concerted least-squares analysis of the 15N relaxations and their concentration dependence reveals that the self-association goes beyond a simple monomer-dimer equilibrium, and that tetramers or other multimeric states co-exist in fast exchange with the monomeric and dimeric hGH at sub-millimolar concentrations. Small changes in the 1H and 15N amide chemical shifts suggest that a region around the C-terminus is involved in the oligomer formation.  相似文献   

6.
Molecular rotational correlation times are of interest for many studies carried out in solution, including characterization of biomolecular structure and interactions. Here we have evaluated the estimates of protein effective rotational correlation times from their translational self-diffusion coefficients measured by pulsed-field gradient NMR against correlation times determined from both collective and residue-specific (15)N relaxation analyses and those derived from 3D structure-based hydrodynamic calculations. The results show that, provided the protein diffusive behavior is coherent with the Debye-Stokes-Einstein model, translational diffusion coefficients provide rapid estimates with reasonable accuracy of their effective rotational correlation times. Effective rotational correlation times estimated from translational diffusion coefficients may be particularly beneficial in cases where i) isotopically labelled material is not available, ii) collective backbone (15)N relaxation rates are difficult to interpret because of the presence of flexible termini or loops, or iii) a full relaxation analysis is practically difficult because of limited sensitivity owing to low protein concentration, high molecular mass or low temperatures.  相似文献   

7.
R Campos-Olivas  M F Summers 《Biochemistry》1999,38(32):10262-10271
Nuclear magnetic resonance (NMR) (15)N relaxation methods have been used to characterize the backbone dynamics of the N-terminal core domain of the HIV-1 capsid protein (CA(151)). The domain, which has an unusually flat, triangular shape, tumbles in solution at 28 degrees C with an effective rotational correlation time of 11.5 ns. Relaxation data for backbone amides in the domain's seven alpha-helices are indicative of fully anisotropic rotational diffusion. The principal axes of the rotational diffusion tensor calculated from the NMR data are aligned to within 12-23 degrees of the principal axes of the inertial tensor, with the axis of fastest rotational diffusion coincident with that of minimal inertia, and vice versa. Large variations in the (15)N-(1)H nuclear Overhauser effects for individual amino acids correlate with the degree of convergence in the previously calculated NMR structure. In particular, the partially disordered residues Val86-Arg97 that contain the human cyclophilin A (CypA) packaging signal have (15)N heteronuclear NOEs and transversal relaxation rates consistent with a high degree of dynamic conformational averaging. The N-terminal domain of a CA mutant (G94D) that confers both resistance to and dependence on cyclosporin A analogues was also analyzed. Our results indicate that this mutation does not influence the conformation or dynamics of CA(151), and therefore probably affects the function of the protein by modifying essential intermolecular CA-CA interactions.  相似文献   

8.
Dynamic properties of gramicidin A in phospholipid membranes   总被引:3,自引:0,他引:3  
P M Macdonald  J Seelig 《Biochemistry》1988,27(7):2357-2364
The flexibility of the tryptophan side chains of gramicidin A and the rotational diffusion of the peptide in methanolic solution and in three membrane systems were studied with deuterium nuclear magnetic resonance (NMR). Gramicidin A was selectively deuterated at the aromatic ring systems of its four tryptophan side chains. In methanolic solution, the tryptophan residues remained immobile and served as a probe for the overall rotation of the peptide. The experimentally determined rotational correlation time of tau c = 0.6 X 10(-9) s was consistent with the formation of gramicidin A dimers. For gramicidin A incorporated into bilayer membranes, quite different results were obtained depending on the chemical and physical nature of the lipids employed. When mixed with 1-palmitoyl-sn-glycero-3-phosphocholine (LPPC) at a stoichiometric lipid:peptide ratio of 4:1, gramicidin A induced the formation of stable bilayer membranes in which the lipids were highly fluid. In contrast, the gramicidin A molecules of this membrane remained completely static over a large temperature interval, suggesting strong protein-protein interactions. The peptide molecules appeared to form a rigid two-dimensional lattice in which the interstitial spaces were filled with fluidlike lipids. When gramicidin A was incorporated into bilayers of 1,2-dioleoyl-sn-glycero-3-phosphocholine or 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) above the lipid phase transition, the deuterium NMR spectra were motionally narrowed, indicating large-amplitude rotational fluctuations. From the measurement of the quadrupole echo relaxation time, a rotational correlation time of 2 X 10(-7) s was estimated, leading to a membrane viscosity of 1-2 P if the rotational unit was assumed to be a gramicidin A dimer. (ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Ferryl (Fe(IV)=O) species are involved in key enzymatic processes with direct biomedical relevance; among others, the uncontrolled reactivities of ferryl Mb (myoglobin) and Hb (haemoglobin) have been reported to be central to the pathology of rhabdomyolysis and subarachnoid haemorrhage. Rapid-scan stopped-flow methods have been used to monitor the spectra of the ferryl species in Mb and Hb as a function of pH. The ferryl forms of both proteins display an optical transition with pK approximately 4.7, and this is assigned to protonation of the ferryl species itself. We also demonstrate for the first time a direct correlation between Hb/Mb ferryl reactivity and ferryl protonation status, simultaneously informing on chemical mechanism and toxicity and with broader biochemical implications.  相似文献   

10.
The hydrodynamic properties of isolated ATPases were studied via their rotational diffusion in buffer solution. Chloroplast F1-ATPase (CF1) and Escherichia coli F1-ATPase (EF1) were covalently labeled with eosinisothiocyanate and then investigated by polarized laser spectroscopy. The rotational correlation time in aqueous buffer of latent (five-subunit) CF1 was 390 ns. Four-subunit (delta-deficient) CF1 showed the same correlation time, however, for three-subunit (delta, epsilon-deficient) CF1 the rotational correlation time was more than eight times larger (3200 ns). The rotational correlation time of activated CF1 was three times larger than the one of latent CF1. These large changes in the rotational correlation times are directly related to changes in the quaternary structure of CF1 upon activation. EF1 was found to behave essentially as activated CF1. Based on the observed rotational correlation times we concluded that the mass distributions of latent CF1 and of delta-deficient CF1 resemble a dimeric arrangement. The structure of delta, epsilon-deficient CF1 more likely resembles a hexagon, the mass centers of the six main subunits lie in one plane. The structure of the activated forms of CF1 can be described best as an intermediate between the dimeric arrangement of latent CF1 and an octahedron. The large changes in the quaternary structure of isolated CF1 are reversed when the activation of the enzyme is reversed.  相似文献   

11.
The dynamics of three synthetic oligonucleotides d(CG)4, d(CG)6, and d(CGCGTTGTTCGCG) of different length and shape were studied in solution by depolarized dynamic light scattering (DDLS) and time-resolved nuclear Overhauser effect cross-relaxation measurements. For cylindrically symmetric molecules the DDLS spectrum is dominated by the rotation of the main symmetry axis of the cylinder. The experimental correlation times describe the rotation of the oligonucleotides under hydrodynamic stick boundary conditions. It is shown that the hydrodynamic theory of Tirado and Garcia de la Torre gives good predictions of the rotational diffusion coefficients of cylindrically symmetric molecules of the small axial ratios studied here. These relations are used to calculate the solution dimensions of the DNA fragments from measured correlation times. The hydrodynamic diameter of the octamer and dodecamer is 20.5 +/- 1.0 A, assuming a rise per base of 3.4 A. The tridecamer, d(CGCGTTGTTCGCG), adopts a hairpin structure with nearly spherical dimensions and a diameter of 23.0 +/- 2.0 A. The DDLS relaxation measurements provide a powerful method for distinguishing between different conformations of the oligonucleotides (e.g., DNA double-helix versus hairpin structure). Furthermore, the rotational correlation times are a very sensitive probe of the length of different fragments. The NMR results reflect the anisotropic motion of the molecules as well as the amount of local internal motion present. The experimental correlation time from NMR is determined by the rotation of both the short and long axes of the oligonucleotide.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Frequency-domain fluorescence spectroscopy was used to investigate the effects of temperature on the intensity and anisotropy decays of the single tryptophan residues of Staphylococcal nuclease A and its nuclease-conA-SG28 mutant. This mutant has the beta-turn forming hexapeptide, Ser-Gly-Asn-Gly-Ser-Pro, substituted for the pentapeptide Tyr-Lys-Gly-Gln-Pro at positions 27-31. The intensity decays were analyzed in terms of a sum of exponentials and with Lorentzian distributions of decay times. The anisotropy decays were analyzed in terms of a sum of exponentials. Both the intensity and anisotropy decay parameters strongly depend on temperature near the thermal transitions of the proteins. Significant differences in the temperature stability of Staphylococcal nuclease and the mutant exist; these proteins show characteristic thermal transition temperatures (Tm) of 51 and 30 degrees C, respectively, at pH 7. The temperature dependence of the intensity decay data are shown to be consistent with a two-state unfolding model. For both proteins, the longer rotational correlation time, due to overall rotational diffusion, decreases dramatically at the transition temperature, and the amplitude of the shorter correlation time increases, indicating increased segmental motions of the single tryptophan residue. The mutant protein appears to have a slightly larger overall rotational correlation time and to show slightly more segmental motion of its Trp than is the case for the wild-type protein.  相似文献   

13.
A Kusumi  J S Hyde 《Biochemistry》1982,21(23):5978-5983
Rotational diffusion of rhodopsin in reconstituted membranes of phosphatidylcholines of various alkyl chain lengths has been measured by using saturation-transfer electron spin resonance spectroscopy as a function of temperature and lipid/rhodopsin mole ratio. For dipalmitoyl-phosphatidylcholine, the rotational correlation time is 20 microseconds at physiological concentration, the same as in rod outer segment (ros) membranes. Dilution reduces the time to 10 microseconds, a value that is ascribed to well-dispersed monomeric rhodopsin. Use of phospholipids with longer or shorter chains results in sharply increased rotational correlation times. It is concluded that rhodopsin molecules are transiently associated in both reconstituted and ros membranes and that the nature of the association is determined by lipid type and composition.  相似文献   

14.
Antarctic icefishes of the family Channichthyidae are the only vertebrate animals that as adults do not express the circulating oxygen-binding protein hemoglobin (Hb). Six of the 16 family members also lack the intracellular oxygen-binding protein myoglobin (Mb) in the ventricle of their hearts and all lack Mb in oxidative skeletal muscle. The loss of Hb has led to substantial remodeling in the cardiovascular system of icefishes to facilitate adequate oxygenation of tissues. One of the more curious adaptations to the loss of Hb and Mb is an increase in mitochondrial density in cardiac myocytes and oxidative skeletal muscle fibers. The proliferation of mitochondria in the aerobic musculature of icefishes does not arise through a canonical pathway of mitochondrial biogenesis. Rather, the biosynthesis of mitochondrial phospholipids is up-regulated independently of the synthesis of proteins and mitochondrial DNA, and newly-synthesized phospholipids are targeted primarily to the outer-mitochondrial membrane. Consequently, icefish mitochondria have a higher lipid-to-protein ratio compared to those from red-blooded species. Elevated levels of nitric oxide in the blood plasma of icefishes, compared to red-blooded notothenioids, may mediate alterations in mitochondrial density and architecture. Modifications in mitochondrial structure minimally impact state III respiration rates but may significantly enhance intracellular diffusion of oxygen. The rate of oxygen diffusion is greater within the hydrocarbon core of membrane lipids compared to the aqueous cytosol and impeded only by proteins within the lipid bilayer. Thus, the proliferation of icefish's mitochondrial membranes provides an optimal conduit for the intracellular diffusion of oxygen and compensates for the loss of Hb and Mb. Currently little is known about how mitochondrial phospholipid synthesis is regulated and integrated into mitochondrial biogenesis. The unique architecture of the oxidative muscle cells of icefishes highlights the need for further studies in this area.  相似文献   

15.
The aim of this study was to examine the effects of assuming constant reduced scattering coefficient (mu'(s)) on the muscle oxygenation response to incremental exercise and its recovery kinetics. Fifteen subjects (age: 24 +/- 5 yr) underwent incremental cycling exercise. Frequency domain near-infrared spectroscopy (NIRS) was used to estimate deoxyhemoglobin concentration {[deoxy(Hb+Mb)]} (where Mb is myoglobin), oxyhemoglobin concentration {[oxy(Hb+Mb)]}, total Hb concentration (Total[Hb+Mb]), and tissue O(2) saturation (Sti(O(2))), incorporating both continuous measurements of mu'(s) and assuming constant mu'(s). When measuring mu'(s), we observed significant changes in NIRS variables at peak work rate Delta[deoxy(Hb+Mb)] (15.0 +/- 7.8 microM), Delta[oxy(Hb+Mb)] (-4.8 +/- 5.8 microM), DeltaTotal[Hb+Mb] (10.9 +/- 8.4 microM), and DeltaSti(O(2))(-11.8 +/- 4.1%). Assuming constant mu'(s) resulted in greater (P < 0.01 vs. measured mu'(s)) changes in the NIRS variables at peak work rate, where Delta[deoxy(Hb+Mb)] = 24.5 +/- 15.6 microM, Delta[oxy(Hb+Mb)] = -9.7 +/- 8.2 microM, DeltaTotal[Hb+Mb] = 14.8 +/- 8.7 microM, and DeltaSti(O(2))= -18.7 +/- 8.4%. Regarding the recovery kinetics, the large 95% confidence intervals (CI) for the difference between those determine measuring mu'(s) and assuming constant mu'(s) suggested poor agreement between methods. For the mean response time (MRT), which describes the overall kinetics, the 95% confidence intervals were MRT - [deoxy(Hb+Mb)] = 26.7 s; MRT - [oxy(Hb+Mb)] = 11.8 s, and MRT - Sti(O(2))= 11.8 s. In conclusion, mu'(s) changed from light to peak exercise. Furthermore, assuming a constant mu'(s) led to an overestimation of the changes in NIRS variables during exercise and distortion of the recovery kinetics.  相似文献   

16.
The rotational diffusion of the acetylcholine (ACh) receptor in subsynaptic membrane fragments from Torpedo marmorata electric organ was investigated with a spin-labelled alpha-bungarotoxin. A toxin with two spin labels was first synthesized; the conventional electron spin resonance spectrum (e.s.r.) of this toxin bound to the receptor indicated: (1) a complete immobilization of the probes; and (2) a strong spin-spin interaction that was not, or barely, seen in solution. The modification of the degree of spin-spin interaction is taken as an indication of a toxin conformational change accompanying its binding to the ACh-receptor. To avoid spin-spin interaction a single-labelled toxin was made and used to follow the rotational diffusion of the receptor by saturation transfer e.s.r. (ST-e.s.r.). With native membranes a high immobilization of the ACh-receptor was noticed. Reduction of the membranes by dithiothreitol had little effect on this motion. Only extraction of the 43 000 protein(s) by pH 11 treatment was able to enhance the rotational diffusion of the ACh-receptor protein (rotational correlation time by ST-e.s.r. in the 0.5 - 1 X 10(-4) s range) and to allow its lateral diffusion in the plane of the membrane fragments (observed by electron microscopy after freeze-etching or negative staining).  相似文献   

17.
The relation of rotational correlation times to adiabatic rotational barriers for alanine methyl groups in staphylococcal nuclease (SNase) is investigated. The hypothesis that methyl rotational barriers may be useful probes of local packing in proteins is supported by an analysis of ten X-ray crystal structures of SNase mutants. The barrier heights are consistent across a set of ten structures of a native SNase and mutants containing single-point mutations or single or double insertions, most in a ternary SNase complex. The barriers for different methyls have a range of 7.5 kcal/mol, which at 300 K would correspond to a five-order-of-magnitude range in correlation time. It is demonstrated that adiabatic rotational barriers can fluctuate significantly during an MD simulation of hydrated SNase, but that a Boltzmann weighted average is predictive of rotational correlation times determined from correlation functions. Even if a given methyl is on average quite sterically hindered, infrequently sampled low-barrier conformations may dominate the Boltzmann distribution. This result is consistent with the observed uniformity of NMR correlation times for (13)C-labeled methyls. The methyl barriers in simulation fluctuate on multiple time scales, which can make the precise relationship between methyl rotational correlation time and methyl rotation barriers complicated. The implications of these issues for the interpretation of correlation times determined from NMR and simulation are discussed.  相似文献   

18.
A small stopped-flow cuvette was built into a computer-controlled Cary 210 spectrophotometer. The enzymatic depletion of oxygen in solutions of hemoglobin and myoglobin was initiated by flowing the hemeproteins with the enzyme against a solution of the hemeproteins containing the appropriate substrate. The deoxygenation was homogeneous throughout the solution. Oxygen activity was calculated at each instant of time from the fractional saturation of Mb, determined from observations at the Hb/HbO2 isosbestic wavelength. Fractional saturation of Hb was determined from absorbances at the Mb/MbO2 isosbestic wavelength. The spectrophotometer cycled between these two wavelengths during the deoxygenation. The deoxygenation of HbO2 was largely complete in 20-25 min, whereas the deoxygenation of MbO2 was allowed to proceed for about 1 h. This procedure eliminates equilibration of Hb solutions with a gas phase and replaces oxygen electrode readings with spectrophotometric sensing by Mb, providing essentially instantaneous determinations of oxygen activity and hence 250-500 or more independent data points per run. The Mb and Hb data vectors require several manipulations to correct for small relative displacements in time and for small non-isosbestic effects. Detailed consideration of the enzyme kinetics allowed oxygen activities to be determined in regions where Mb is a poor sensor. Studies of HbO2 deoxygenation as a function of wavelength show that the determination of the four Adair constants requires in addition the determination of three spectroscopic parameters. Values of the apparent Adair constants, determined without these spectroscopic parameters, depend strongly on the monitoring wavelength.  相似文献   

19.
Molecular dynamics simulations were carried out on two conformations of the dinucleoside monophosphate guanylyl-3',5'-uridine (GpU) in aqueous solution with one sodium counterion. One stacked conformation and one with the C3'-O3'-P-O5' backbone torsion angle twisted 180 degrees to create an unstacked conformation. We observed a relatively stable behavior of the stacked conformation, which remained stacked throughout the simulation, whereas the unstacked conformation showed major changes in the backbone torsion and glycosidic angles. During the simulation the unstacked conformation transformed into a more stacked form and then back again to an unstacked one. The calculated correlation times for rotational diffusion from the molecular dynamics simulations are in agreement with fluorescence anisotropy and nuclear magnetic resonance data. As expected, the correlation times for rotational diffusion of the unstacked conformation were observed to be longer than for the stacked conformation. The 2'OH group may contribute in stabilizing the stacked conformation, where the O2'-H...O4' hydrogen bond occurred in 82.7% of the simulation.  相似文献   

20.
An accurate determination of the overall rotation of a protein plays a crucial role in the investigation of its internal motions by NMR. In the present work, an innovative approach to the determination of the protein rotational correlation time R from the heteronuclear relaxation data is proposed. The approach is based on a joint fit of relaxation data acquired at several viscosities of a protein solution. The method has been tested on computer simulated relaxation data as compared to the traditional R determination method from T1/T2 ratio. The approach has been applied to ribonuclease barnase from Bacillus amyloliquefaciens dissolved in an aqueous solution and deuterated glycerol as a viscous component. The resulting rotational correlation time of 5.56 ± 0.01 ns and other rotational diffusion tensor parameters are in good agreement with those determined from T1/T2 ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号