首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Water molecules in hydrophobic biological cleft/cavities are of contemporary interest for the biomolecular structure and molecular recognition of hydrophobic ligands/drugs. Here, we have explored picosecond-resolved solvation dynamics of water molecules and associated polar amino acids in the hydrophobic cleft around Cys-34 position of Endogenous Serum Albumin (ESA). While site selective acrylodan labeling to Cys-34 allows us to probe solvation in the cleft, Förster resonance energy transfer (FRET) from intrinsic fluorescent amino acid Trp 214 to the extrinsic acrylodan probes structural integrity of the protein in our experimental condition. Temperature dependent solvation in the cleft clearly shows that the dynamics follows Arrhenius type behavior up to 60 °C, after which a major structural perturbation of the protein is evident. We have also monitored polarization gated dynamics of the acrylodan probe and FRET from Trp 214 to acrylodan at various temperatures. The dynamical behavior of the immediate environments around the probe acrylodan in the cleft has been compared with a model biomimetic cavity of a reverse micelle (w0 = 5). Using same fluorescent probe of acrylodan, we have checked the structural integrity of the model cavity at various temperatures using picosecond-resolved FRET from Trp to acrylodan in the cavity. We have also estimated possible distribution of donor-acceptor distances in the protein and reverse micelles. Our studies reveal that the energetics of the water molecules in the biological cleft is comparable to that in the model cavity indicating a transition from bound state to quasibound state, closely consistent with a recent MD simulation study.  相似文献   

3.
In spite of much work, many of the properties of water remain puzzling. A fluctuating network of water molecules, with localised icosahedral symmetry, is proposed to exist derived from clusters containing, if complete, 280 fully hydrogen-bonded molecules. These are formed by the regular arrangement of identical units of 14 water molecules that can tessellate locally, by changing centres, in three-dimensions and interconvert between lower and higher density forms. The structure allows explanation of many of the anomalous properties of water including its temperature-density and pressure-viscosity behaviour, the radial distribution pattern, the presence of both pentamers and hexamers, the change in properties and 'two-state' model on supercooling and the solvation properties of ions, hydrophobic molecules, carbohydrates and macromolecules. The model described here offers a structure on to which large molecules can be mapped in order to offer insights into their interactions.  相似文献   

4.
A new method is proposed for calculating aqueous solvation free energy based on atom-weighted solvent accessible surface areas. The method, SAWSA v2.0, gives the aqueous solvation free energy by summing the contributions of component atoms and a correction factor. We applied two different sets of atom typing rules and fitting processes for small organic molecules and proteins, respectively. For small organic molecules, the model classified the atoms in organic molecules into 65 basic types and additionally. For small organic molecules we proposed a correction factor of hydrophobic carbon to account for the aggregation of hydrocarbons and compounds with long hydrophobic aliphatic chains. The contributions for each atom type and correction factor were derived by multivariate regression analysis of 379 neutral molecules and 39 ions with known experimental aqueous solvation free energies. Based on the new atom typing rules, the correlation coefficient (r) for fitting the whole neutral organic molecules is 0.984, and the absolute mean error is 0.40 kcal mol–1, which is much better than those of the model proposed by Wang et al. and the SAWSA model previously proposed by us. Furthermore, the SAWSA v2.0 model was compared with the simple atom-additive model based on the number of atom types (NA). The calculated results show that for small organic molecules, the predictions from the SAWSA v2.0 model are slightly better than those from the atom-additive model based on NA. However, for macromolecules such as proteins, due to the connection between their molecular conformation and their molecular surface area, the atom-additive model based on the number of atom types has little predictive power. In order to investigate the predictive power of our model, a systematic comparison was performed on seven solvation models including SAWSA v2.0, GB/SA_1, GB/SA_2, PB/SA_1, PB/SA_2, AM1/SM5.2R and SM5.0R. The results showed that for organic molecules the SAWSA v2.0 model is better than the other six solvation models. For proteins, the model classified the atoms into 20 basic types and the predicted aqueous free energies of solvation by PB/SA were used for fitting. The solvation model based on the new parameters was employed to predict the solvation free energies of 38 proteins. The predicted values from our model were in good agreement with those from the PB/SA model and were much better than those given by the other four models developed for proteins.Figure The definition of hydrophobic carbons. Here CA, CB and CD are three carbon atoms; X represents a heteroatom. According to our definition, CB is a hydrophobic carbon, CA is not a hydrophobic carbon because a heteroatom is within four atoms and CD is not a hydrophobic carbon because CD is sp2- hydridized and in a six-member ring.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

5.
The effects of urea and glycine-betaine (GB) osmolytes on the hydrophobic interactions of neopentane in water have been studied using molecular dynamics simulations. From the study of the potentials of mean force, it is observed that both urea and GB decrease the association and solvation of neopentane. The calculated equilibrium constants show that urea and GB decrease the population of solvent-separated minima of neopentane. The hydrophobic association as well as solvation of neopentane molecules are stabilised by entropy and enthalpy in the mixtures. The radial distribution functions (RDFs) and running coordination numbers of water, urea and GB molecules show that neopentane shows salting-in behaviour in aqueous-GB, aqueous-urea and aqueous-urea-GB mixtures. Neopentane is preferentially solvated by GB in aqueous-GB and preferentially solvated by urea in aqueous-urea-GB solutions. The preferential solvation of neopentane by GB suggests that GB decreases the interaction between neopentane molecules i.e. salting-in of neopentane. The calculated solvation free energies and radial density profiles of neopentane also support the salting-in behaviour of neopentane in the mixtures of these osmolytes.  相似文献   

6.
7.
To calculate the solvation of hydrophobic solutes, we have developed a method based on the fundamental measure treatment of density functional theory. This method allows us to carry out calculations of density profiles and the solvation energy for various hydrophobic molecules with high accuracy. We have applied the method to the hydration of various hydrocarbons (linear, branched and cyclic). The calculations of the entropic and enthalpic parts are also carried out. We have examined the question of the temperature dependence of the entropy convergence. Finally, we have calculated the mean force potential between two large hydrophobic nanoparticles immersed in water. Proceedings of “Modeling Interactions in Biomolecules II”, Prague, September 5th–9th, 2005.  相似文献   

8.
A method is developed on the basis of the fundamental measure model of the density functional theory for calculating solvation of hydrophobic particles. This method allows one to calculate density and solvation energy profiles for hydrophobic molecules. An additional merit of the method is the possibility to calculate the interaction forces and mean force potential for hydrophobic nanoparticles. Solvation parameters for spherical solutes with sizes from one angstrom to several nanometers have been calculated using this method.  相似文献   

9.
We describe an efficient solvation model for proteins. In this model atomic solvation parameters imitating the hydrocarbon core of a membrane, water, and weak polar solvent (octanol) were developed. An optimal number of solvation parameters was chosen based on analysis of atomic hydrophobicities and fitting experimental free energies of gas-cyclohexane, gas-water, and octanol-water transfer for amino acids. The solvation energy term incorporated into the ECEPP/2 potential energy function was tested in Monte Carlo simulations of a number of small peptides with known energies of bilayer-water and octanol-water transfer. The calculated properties were shown to agree reasonably well with the experimental data. Furthermore, the solvation model was used to assess membrane-promoting alpha-helix formation. To accomplish this, all-atom models of 20-residue homopolypeptides-poly-Leu, poly-Val, poly-Ile, and poly-Gly in initial random coil conformation-were subjected to nonrestrained Monte Carlo conformational search in vacuo and with the solvation terms mimicking the water and hydrophobic parts of the bilayer. All the peptides demonstrated their largest helix-forming tendencies in a nonpolar environment, where the lowest-energy conformers of poly-Leu, Val, Ile revealed 100, 95, and 80% of alpha-helical content, respectively. Energetic and conformational properties of Gly in all environments were shown to be different from those observed for residues with hydrophobic side chains. Applications of the solvation model to simulations of peptides and proteins in the presence of membrane, along with limitations of the approach, are discussed.  相似文献   

10.
Tiunina EIu  Badelin VG 《Biofizika》2005,50(6):965-973
The enthalpies of solvation of 17 amino acids were evaluated by using the sublimation enthalpies of amino acids and the standard enthalpies of their solution in water. An equation was derived, which relates the volume-specific enthalpy of sublimation (deltaH(subl)/V(w)) to the sum of the common bond lengths in molecules (sigman(i)l(i)) of substances examined. The results obtained are interpreted in terms of the effect of hydrophobic and hydrophilic side chain on the interactions between the zwitterions of amino acids and water molecules.  相似文献   

11.
A model calculation is carried out to study the potential energy profile of a sodium ion with several water molecules inside a simplified model of the gramicidin ion channel. The sodium ion is treated as a Lennard-Jones sphere with a point charge at its center. The Barnes polarizable water model is used to mimic the water molecules. A polarizable and deformable gramicidinlike channel is constructed based on the model obtained by Koeppe and Kimura. Potential minima and saddle points are located and the static energy barriers are computed. The potential minima at the two mouths of the channel exhibit an aqueous solvation structure very different from that at any of the interior minima. These sites are approximately 23.6 and 24.4 A apart for binding of a sodium ion and a cesium ion, respectively. Ionic motion from these exterior sites to the first interior minimum requires substantial rearrangement of the waters of solvation; this rearrangement may be the hydration/dehydration step in ionic permeation through the channel. Based on these results, a mechanism by which the sodium ion moves from the exterior binding site to the interior of the channel is proposed. Our model channel accommodates about eight water molecules and the transport of the ion and water within the channel is found to be single file. Results of less extensive calculations for Cs+ and Li+ ions in a channel with or without water are also reported.  相似文献   

12.
Chuev GN  Sokolov VF 《Biofizika》2006,51(3):402-408
Using the fundamental measure treatment of the density functional theory, we have developed a method to calculate the solvation of hydrophobic solutes. The method allows one to calculate the density profile and the solvation energy for hydrophobic molecules. An additional benefit of the method is the possibility to calculate interaction forces and the mean force potential between hydrophobic nanoparticles. On the basis of the method, the solvation energies for spherical solutes of different sizes from one angstrom up to several nanometers were calculated.  相似文献   

13.
The Polo-Like Kinase 1 (PLK1) acts as a central regulator of mitosis and is over-expressed in a wide range of human tumours where high levels of expression correlate with a poor prognosis. PLK1 comprises two structural elements, a kinase domain and a polo-box domain (PBD). The PBD binds phosphorylated substrates to control substrate phosphorylation by the kinase domain. Although the PBD preferentially binds to phosphopeptides, it has a relatively broad sequence specificity in comparison with other phosphopeptide binding domains. We analysed the molecular determinants of recognition by performing molecular dynamics simulations of the PBD with one of its natural substrates, CDC25c. Predicted binding free energies were calculated using a molecular mechanics, Poisson-Boltzmann surface area approach. We calculated the per-residue contributions to the binding free energy change, showing that the phosphothreonine residue and the mainchain account for the vast majority of the interaction energy. This explains the very broad sequence specificity with respect to other sidechain residues. Finally, we considered the key role of bridging water molecules at the binding interface. We employed inhomogeneous fluid solvation theory to consider the free energy of water molecules on the protein surface with respect to bulk water molecules. Such an analysis highlights binding hotspots created by elimination of water molecules from hydrophobic surfaces. It also predicts that a number of water molecules are stabilized by the presence of the charged phosphate group, and that this will have a significant effect on the binding affinity. Our findings suggest a molecular rationale for the promiscuous binding of the PBD and highlight a role for bridging water molecules at the interface. We expect that this method of analysis will be very useful for probing other protein surfaces to identify binding hotspots for natural binding partners and small molecule inhibitors.  相似文献   

14.
15.
We report on the solvation properties and intermolecular interactions of a model protein (bovine serum albumine, BSA) in urea aqueous solutions, as obtained by combining small-angle neutron and X-ray scattering experiments. According to a global fit strategy, all the whole set of scattering curves are analysed by considering a unique model which includes the BSA structure, the protein-protein interactions and the thermodynamic exchange process of water/urea molecules at the protein solvent interface. As a main result, the equilibrium constant that accounts for the difference in composition between the bulk solvent and the protein solvation layer is derived. Results confirm that urea preferentially sticks to the protein surface, inducing a noticeable change in both the repulsive and the attractive interaction potentials.  相似文献   

16.
A theoretical solvation model of peptides and proteins that mimics the heterogeneous membrane-water system was proposed. Our approach is based on the combined use of atomic parameters of solvation for water and hydrocarbons, which approximates the hydrated polar groups and acyl chains of lipids, respectively. This model was tested in simulations of several peptides: a nonpolar 20-mer polyleucine, a hydrophobic peptide with terminal polar groups, and a strongly amphiphilic peptide. The conformational space of the peptides in the presence of the membrane was studied by the Monte Carlo method. Unlike a polar solvent and vacuum, the membrane-like environment was shown to stabilize the alpha-helical conformation: low-energy structures have a helicity index of 100% in all cases. At the same time, the energetically most favorable orientations of the peptides relative to the membrane depend on their hydrophobic properties: nonpolar polyleucine is entirely immersed in the bilayer and the hydrophobic peptide with polar groups at the termini adopts a transbilayer orientation, whereas the amphiphilic peptide lies at the interface parallel to the membrane plane. The results of the simulations agree well with the available experimental data for these systems. In the following communications of this series, we plan to describe applications of the solvation model to membrane-bound proteins and peptides with biologically important functional activities.  相似文献   

17.
A theoretical solvation model of peptides and proteins that mimics the heterogeneous membrane-water system was proposed. Our approach is based on the combined use of atomic parameters of solvation for water and hydrocarbons, which approximates the hydrated polar groups and acyl chains of lipids, respectively. This model was tested in simulations of several peptides: a nonpolar 20-mer polyleucine, a hydrophobic peptide with terminal polar groups, and a strongly amphiphilic peptide. The conformational space of the peptides in the presence of the membrane was studied by the Monte Carlo method. Unlike a polar solvent and vacuum, the membrane-like environment was shown to stabilize the α-helical conformation: low-energy structures have a helicity index of 100% in all cases. At the same time, the energetically most favorable orientations of the peptides relative to the membrane depend on their hydrophobic properties: nonpolar polyleucine is entirely immersed in the bilayer and the hydrophobic peptide with polar groups at the termini adopts a transbilayer orientation, whereas the amphiphilic peptide lies at the interface parallel to the membrane plane. The results of the simulations agree well with the available experimental data for these systems. In the following communications of this series, we plan to describe applications of the solvation model to membrane-bound proteins and peptides with biologically important functional activities.  相似文献   

18.
19.
Molecular dynamics simulations are used to model the transfer thermodynamics of krypton from the gas phase into water. Extra long, nanosecond simulations are required to reduce the statistical uncertainty of the calculated "solvation" enthalpy to an acceptable level. Thermodynamic integration is used to calculate the "solvation" free energy, which together with the enthalpy is used to calculate the "solvation" entropy. A comparison series of simulations are conducted using a single Lennard-Jones sphere model of water to identify the contribution of hydrogen bonding to the thermodynamic quantities. In contrast to the classical "iceberg" model of hydrophobic hydration, the favorable enthalpy change for the transfer process at room temperature is found to be due primarily to the strong van der Waals interaction between the solute and solvent. Although some stabilization of hydrogen bonding does occur in the solvation shell, this is overshadowed by a destabilization due to packing constraints. Similarly, whereas some of the unfavorable change in entropy is attributed to the reduced rotational motion of the solvation shell waters, the major component is due to a decrease in the number of positional arrangements associated with the translational motions.  相似文献   

20.
This study was done to better understand how lipases are activated at an interface. We investigated the conformational and solvation changes occurring during the adsorption of Humicola lanuginosa lipase (HLL) onto a hydrophobic surface using Fourier transform infrared-attenuated total reflection spectroscopy. The hydrophobic surfaces were obtained by coating silicon attenuated total reflection crystal with octadecyltrichlorosilane. Analysis of vibrational spectra was used to compare the conformation of HLL adsorbed at the aqueous-solid interface with its conformation in solution. X-ray crystallography has shown that HLL exists in two conformations, the closed and open forms. The conformational changes in HLL caused by adsorption onto the surface were compared with those occurring in three reference proteins, bovine serum albumin, lysozyme, and alpha-chymotrypsin. Adsorbed protein layers were prepared using proteins solutions of 0.005 to 0.5 mg/mL. The adsorptions of bovine serum albumin, lysozyme, and alpha-chymotrypsin to the hydrophobic support were accompanied by large unfoldings of ordered structures. In contrast, HLL underwent no secondary structure changes at first stage of adsorption, but there was a slight folding of beta-structures as the lipase monolayer became complete. Solvation studies using deuterated buffer showed an unusual hydrogen/deuterium exchange of the peptide CONH groups of the adsorbed HLL molecules. This exchange is consistent with the lipase being in the native open conformation at the water/hydrophobic interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号