首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pretreatment and Lignocellulosic Chemistry   总被引:2,自引:0,他引:2  
Lignocellulosic materials such as wood, grass, and agricultural and forest residues are promising alternative energy resources that can be utilized to produce ethanol. The yield of ethanol production from native lignocellulosic material is relatively low due to its native recalcitrance, which is attributed to, in part, lignin content/structure, hemicelluloses, cellulose crystallinity, and other factors. Pretreatment of lignocellulosic materials is required to overcome this recalcitrance. The goal of pretreatment is to alter the physical features and chemical composition/structure of lignocellulosic materials, thus making cellulose more accessible to enzymatic hydrolysis for sugar conversion. Various pretreatment technologies to reduce recalcitrance and to increase sugar yield have been developed during the past two decades. This review examines the changes in lignocellulosic structure primarily in cellulose and hemicellulose during the most commonly applied pretreatment technologies including dilute acid pretreatment, hydrothermal pretreatment, and alkaline pretreatment.  相似文献   

2.
ABSTRACT: BACKGROUND: Lignocellulose is the most abundant biomass on earth. However, biomass recalcitrance has become a major factor affecting biofuel production. Although cellulose crystallinity significantly influences biomass saccharification, little is known about the impact of three major wall polymers on cellulose crystallization. In this study, we selected six typical pairs of Miscanthus samples that presented different cell wall compositions, and then compared their cellulose crystallinity and biomass digestibility after various chemical pretreatments. RESULTS: A Miscanthus sample with a high hemicelluloses level was determined to have a relatively low cellulose crystallinity index (CrI) and enhanced biomass digestibility at similar rates after pretreatments of NaOH and H2SO4 with three concentrations. By contrast, a Miscanthus sample with a high cellulose or lignin level showed increased CrI and low biomass saccharification, particularly after H2SO4 pretreatment. Correlation analysis revealed that the cellulose CrI negatively affected biomass digestion. Increased hemicelluloses level by 25% or decreased cellulose and lignin contents by 31% and 37% were also found to result in increased hexose yields by 1.3-times to 2.2-times released from enzymatic hydrolysis after NaOH or H2SO4 pretreatments. The findings indicated that hemicelluloses were the dominant and positive factor, whereas cellulose and lignin had synergistic and negative effects on biomass digestibility. CONCLUSIONS: Using six pairs of Miscanthus samples with different cell wall compositions, hemicelluloses were revealed to be the dominant factor that positively determined biomass digestibility after pretreatments with NaOH or H2SO4 by negatively affecting cellulose crystallinity. The results suggested potential approaches to the genetic modifications of bioenergy crops.  相似文献   

3.
Ethanol can be produced from lignocellulosic biomass using steam pretreatment followed by enzymatic hydrolysis and fermentation. The sugar yields, from both hemicellulose and cellulose are critical parameters for an economically-feasible ethanol production process. This study shows that a near-theoretical glucose yield (96-104%) from acid-catalysed steam pretreated corn stover can be obtained if xylanases are used to supplement cellulases during hydrolysis. Xylanases hydrolyse residual hemicellulose, thereby improving the access of enzymes to cellulose. Under these conditions, xylose yields reached 70-74%. When pre-treatment severity was reduced by using autocatalysis instead of acid-catalysed steam pretreatment, xylose yields were increased to 80-86%. Partial delignification of pretreated material was also evaluated as a way to increase the overall sugar yield. The overall glucose yield increased slightly due to delignification but the overall xylose yield decreased due to hemicellulose loss in the delignification step. The data also demonstrate that steam pretreatment is a robust process: corn stover from Europe and North America showed only minor differences in behaviour.  相似文献   

4.
This mini review discusses several key technical issues associated with cellulosic ethanol production from woody biomass: energy consumption for woody biomass pretreatment, pretreatment energy efficiency, woody biomass pretreatment technologies, and quantification of woody biomass recalcitrance. Both total sugar yield and pretreatment energy efficiency, defined as the total sugar recovery divided by total energy consumption for pretreatment, should be used to evaluate the performance of a pretreatment process. A post-chemical pretreatment wood size-reduction approach was proposed to significantly reduce energy consumption. The review also emphasizes using a low liquid-to-wood ratio (L/W) to reduce thermal energy consumption for any thermochemical/physical pretreatment in addition to reducing pretreatment temperature.  相似文献   

5.
Lignocellulosic biomass is today considered a promising renewable resource for bioenergy production. A combined chemical and biological process is currently under consideration for the conversion of polysaccharides from plant cell wall materials, mainly cellulose and hemicelluloses, to simple sugars that can be fermented to biofuels. Native plant cellulose forms nanometer-scale microfibrils that are embedded in a polymeric network of hemicelluloses, pectins, and lignins; this explains, in part, the recalcitrance of biomass to deconstruction. The chemical and structural characteristics of these plant cell wall constituents remain largely unknown today. Scanning probe microscopy techniques, particularly atomic force microscopy and its application in characterizing plant cell wall structure, are reviewed here. We also further discuss future developments based on scanning probe microscopy techniques that combine linear and nonlinear optical techniques to characterize plant cell wall nanometer-scale structures, specifically apertureless near-field scanning optical microscopy and coherent anti-Stokes Raman scattering microscopy.  相似文献   

6.
ABSTRACT: BACKGROUND: Historically, acid pretreatment technology for the production of bio-ethanol from corn stover has required severe conditions to overcome biomass recalcitrance. However, the high usage of acid and steam at severe pretreatment conditions hinders the economic feasibility of the ethanol production from biomass. In addition, the amount of acetate and furfural produced during harsh pretreatment is in the range that strongly inhibits cell growth and impedes ethanol fermentation. The current work addresses these issues through pretreatment with lower acid concentrations and temperatures incorporated with deacetylation and mechanical refining. RESULTS: The results showed that deacetylation with 0.1 M NaOH before acid pretreatment improved the monomeric xylose yield in pretreatment by up to 20 % while keeping the furfural yield under 2 %. Deacetylation also improved the glucose yield by 10 % and the xylose yield by 20 % during low solids enzymatic hydrolysis. Mechanical refining using a PFI mill further improved sugar yields during both low- and high-solids enzymatic hydrolysis. Mechanical refining also allowed enzyme loadings to be reduced while maintaining high yields. Deacetylation and mechanical refining are shown to assist in achieving 90 % cellulose yield in high-solids (20 %) enzymatic hydrolysis. When fermentations were performed under pH control to evaluate the effect of deacetylation and mechanical refining on the ethanol yields, glucose and xylose utilizations over 90 % and ethanol yields over 90 % were achieved. Overall ethanol yields were calculated based on experimental results for the base case and modified cases. One modified case that integrated deacetylation, mechanical refining, and washing was estimated to produce 88 gallons of ethanol per ton of biomass. CONCLUSION: The current work developed a novel bio-ethanol process that features pretreatment with lower acid concentrations and temperatures incorporated with deacetylation and mechanical refining. The new process shows improved overall ethanol yields compared to traditional dilute acid pretreatment. The experimental results from this work support the techno-economic analysis and calculation of Minimum Ethanol Selling Price (MESP) detailed in our companion paper.  相似文献   

7.
Rice husk is one of the most abundant types of lignocellulosic biomass. Because of its significant amount of sugars, such as cellulose and hemicellulose, it can be used for the production of biofuels such as bioethanol. However, the complex structure of lignocellulosic biomass, consisting of cellulose, hemicellulose and lignin, is resistant to degradation, which limits biomass utilization for ethanol production. The protection of cellulose by lignin contributes to the recalcitrance of lignocelluloses to hydrolysis. Therefore, we conducted steam-explosion treatment as pretreatment of rice husk. However, recombinant Escherichia coli KO11 did not ferment the reducing sugar solution obtained by enzymatic saccharification of steam-exploded rice husk. When the steam-exploded rice husk was washed with hot water to remove inhibitory substances and M9 medium (without glucose) was used as a fermentation medium, E. coli KO11 completely fermented the reducing sugar solution obtained by enzymatic saccharification of hot water washing-treated steam-exploded rice husk to ethanol. We report here the efficient production of bioethanol using steam-exploded rice husk.  相似文献   

8.
At the core of cellulosic ethanol research are innovations leading to reductions in the chemical and energetic stringency of thermochemical pretreatments and enzymatic saccharification. In this study, key compositional features of maize cell walls influencing the enzymatic conversion of biomass into fermentable sugars were identified. Stem samples from eight contrasting genotypes were subjected to a series of thermal dilute-acid pretreatments of increasing severity and evaluated for glucose release after enzymatic saccharification. The biochemically diverse set of genotypes displayed significant differences in glucose yields at all processing conditions evaluated. The results revealed that mechanisms controlling biomass conversion efficiency vary in relation to pretreatment severity. At highly severe pretreatments, cellulose conversion efficiency was primarily influenced by the inherent efficacy of the thermochemical process, and maximum glucose yields were obtained from cellulosic feedstocks harboring the highest cellulose contents per dry gram of biomass. When mild dilute-acid pretreatments were applied, however, maximum bioconversion efficiency and glucose yields were observed for genotypes combining high stem cellulose contents, reduced cell wall lignin and highly substituted hemicelluloses. For the best-performing genotype, glucose yields under sub-optimal processing regimes were only 10 % lower than the genotype-set mean at the most stringent processing conditions evaluated, while furfural production was reduced by approximately 95 %. Our results ultimately established that cellulosic feedstocks with tailored cell wall compositions can help reduce the chemical and energetic intensity of pretreatments used in the industry and improve the commercial and environmental performance of biomass-to-ethanol conversion technologies.  相似文献   

9.
Ionic liquids (ILs) have emerged as attractive solvents for lignocellulosic biomass pretreatment in the production of biofuels and chemical feedstocks. However, the high cost of ILs is a key deterrent to their practical application. Here, we show that acetate based ILs are effective in dramatically reducing the recalcitrance of corn stover toward enzymatic polysaccharide hydrolysis even at loadings of biomass as high as 50% by weight. Under these conditions, the IL serves more as a pretreatment additive rather than a true solvent. Pretreatment of corn stover with 1‐ethyl‐3‐methylimidizolium acetate ([Emim] [OAc]) at 125 ± 5°C for 1 h resulted in a dramatic reduction of cellulose crystallinity (up to 52%) and extraction of lignin (up to 44%). Enzymatic hydrolysis of the IL‐treated biomass was performed with a common commercial cellulase/xylanase from Trichoderma reesei and a commercial β‐glucosidase, and resulted in fermentable sugar yields of ~80% for glucose and ~50% for xylose at corn stover loadings up to 33% (w/w) and 55% and 34% for glucose and xylose, respectively, at 50% (w/w) biomass loading. Similar results were observed for the IL‐facilitated pretreatment of switchgrass, poplar, and the highly recalcitrant hardwood, maple. At 4.8% (w/w) corn stover, [Emim][OAc] can be readily reused up to 10 times without removal of extracted components, such as lignin, with no effect on subsequent fermentable sugar yields. A significant reduction in the amount of IL combined with facile recycling has the potential to enable ILs to be used in large‐scale biomass pretreatment. Biotechnol. Bioeng. 2011;108: 2865–2875. © 2011 Wiley Periodicals, Inc.  相似文献   

10.
Cholinium amino acids ionic liquids ([Ch][AA] ILs), a novel type of bio‐ILs that can easily be prepared from renewable biomaterials, were investigated for pretreatment of rice straw by selective extraction of lignin from this abundant lignocellulosic biomass material. Of the eight ILs examined, most were demonstrated to be excellent pretreatment solvents. Upon pretreatment using these ILs, the initial saccharification rates of rice straw residues were substantially improved as well as the extent to which polysaccharides could be digested (>90% for cellulose and >60% for xylan). Enzymatic hydrolysis of pretreated rice straw by Trichoderma reesei cellulase/xylanase furnished glucose and xylose with the yields in excess of 80% and 30%, respectively. Detailed spectroscopic characterization showed that the enhancement of polysaccharides degestibility derived mainly from delignification rather than changes in cellulose crystallinity. The yields of fermentable reducing sugars were significantly improved after individual optimization of pretreatment temperature and duration. With [Ch][Lys] as the solvent, the sugar yields of 84.0% for glucose and 42.1% for xylose were achieved after pretreatment at 90°C for 5 h. The IL [Ch][Lys] showed excellent reusability across five successive batches in pretreatment of rice straw. These bio‐ILs performed as well as or better than previously investigated non‐renewable ILs, and thus present a new and environmentally friendly way to pretreat lignocellulose for production of fermentable sugars and total utilization of the biomass. Biotechnol. Bioeng. 2012; 109: 2484–2493. © 2012 Wiley Periodicals, Inc.  相似文献   

11.
Corn is a major food crop with enormous biomass residues for biofuel production. Due to cell wall recalcitrance, it becomes essential to identify the key factors of lignocellulose on biomass saccharification. In this study, we examined total 40 corn accessions that displayed a diverse cell wall composition. Correlation analysis showed that cellulose and lignin levels negatively affected biomass digestibility after NaOH pretreatments at p<0.05 & 0.01, but hemicelluloses did not show any significant impact on hexoses yields. Comparative analysis of five standard pairs of corn samples indicated that cellulose and lignin should not be the major factors on biomass saccharification after pretreatments with NaOH and H2SO4 at three concentrations. Notably, despite that the non-KOH-extractable residues covered 12%–23% hemicelluloses and lignin of total biomass, their wall polymer features exhibited the predominant effects on biomass enzymatic hydrolysis including Ara substitution degree of xylan (reverse Xyl/Ara) and S/G ratio of lignin. Furthermore, the non-KOH-extractable polymer features could significantly affect lignocellulose crystallinity at p<0.05, leading to a high biomass digestibility. Hence, this study could suggest an optimal approach for genetic modification of plant cell walls in bioenergy corn.  相似文献   

12.
Lignocellulosic biomass is a sustainable feedstock for fuel ethanol production, but it is characterized by low mass and energy densities, and distributed production with relatively small scales is more suitable for cellulosic ethanol, which can better balance cost for the feedstock logistics. Lignocellulosic biomass is recalcitrant to degradation, and pretreatment is needed, but more efficient pretreatment technologies should be developed based on an in-depth understanding of its biosynthesis and regulation for engineering plant cell walls with less recalcitrance. Simultaneous saccharification and co-fermentation has been developed for cellulosic ethanol production, but the concept has been mistakenly defined, since the saccharification and co-fermentation are by no means simultaneous. Lignin is unreactive, which not only occupies reactor spaces during the enzymatic hydrolysis of the cellulose component and ethanol fermentation thereafter, but also requires extra mixing, making high solid loading difficult for lignocellulosic biomass and ethanol titers substantially compromised, which consequently increases energy consumption for ethanol distillation and stillage discharge, presenting another challenge for cellulosic ethanol production. Pentose sugars released from the hydrolysis of hemicelluloses are not fermentable with Saccharomyces cerevisiae used for ethanol production from sugar- and starch-based feedstocks, and engineering the brewing yeast and other ethanologenic species such as Zymomonas mobilis with pentose metabolism has been performed within the past decades. However strategies for the simultaneous co-fermentation of pentose and hexose sugars that have been pursued overwhelmingly for strain development might be modified for robust ethanol production. Finally, unit integration and system optimization are needed to maximize economic and environmental benefits for cellulosic ethanol production. In this article, we critically reviewed updated progress, and highlighted challenges and strategies for solutions.  相似文献   

13.
The underlying mechanisms of the recalcitrance of biomass to enzymatic deconstruction are still not fully understood, and this hampers the development of biomass based fuels and chemicals. With water being necessary for most biological processes, it is suggested that interactions between water and biomass may be key to understanding and controlling biomass recalcitrance. This study investigates the correlation between biomass recalcitrance and the constraint and retention of water by the biomass, using SO2 pretreated spruce, a common feedstock for lignocellulosic biofuel production, as a substrate to evaluate this relationship. The water retention value (WRV) of the pretreated materials was measured, and water constraint was assessed using time domain Low Field Nuclear Magnetic Resonance (LFNMR) relaxometry. WRV increased with pretreatment severity, correlating to reduced recalcitrance, as measured by hydrolysis of cellulose using commercial enzyme preparations. Water constraint increased with pretreatment severity, suggesting that a higher level of biomass‐water interaction is indicative of reduced recalcitrance in pretreated materials. Both WRV and water constraint increased significantly with reductions in particle size when pretreated materials were further milled, suggesting that particle size plays an important role in biomass water interactions. It is suggested that WRV may be a simple and effective method for measuring and comparing biomass recalcitrance. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:146–153, 2017  相似文献   

14.
Current attempts to produce ethanol from lignocellulosic biomass are focused on the optimization of pretreatment to reduce substrate recalcitrance and the improvement of enzymes for hydrolysis of the cellulose and hemicellulose components to produce fermentable sugars. Research aimed at optimizing both aspects of the bioconversion process involves assessment of the effects of multiple variables on enzyme efficiency, resulting in large factorial experiments with intensive assay requirements. A rapid assay for lignocellulose hydrolysis has been developed to address this need. Pretreated lignocellulose is formed into handsheets, which are then used to prepare small disks that are easily dispensed into microtiter plates. The hydrolysis of cellulose to glucose is estimated using an enzyme-coupled spectrophotometric assay. Using disks prepared from ethanol organosolv pretreated yellow poplar, it is shown that the assay generates data comparable with those produced by hydrolysis of pretreated yellow poplar pulp in Erlenmeyer flasks, followed by HPLC analysis of glucose. The assay shows considerable time and cost benefits over the standard assay protocol and is applicable to a broad range of lignocellulosic substrates.  相似文献   

15.
Pinewood is an abundant source of lignocellulosic biomass that has potential to be used as renewable feedstock in biorefineries for conversion into advanced biofuels and other value-added chemicals. However, its structural recalcitrance, due to the compact packing of its major components, viz. cellulose, hemicellulose and lignin, high lignin content, and high cellulose crystallinity, is a major bottleneck in its widespread use as a biorefinery feedstock. Typical chemical, thermal, and biological pretreatment technologies are aimed at removing lignin and hemicellulose fractions for improving enzyme accessibility and digestibility of cellulose. This review highlights common pine pretreatment procedures, associated key parameters and resulting enzymatic hydrolysis yields. The challenges and limitations are also discussed as well as potential strategies to overcome them, providing an essential source of information to realize pine as a compelling biorefinery biomass source.  相似文献   

16.
Thermo-mechanical extrusion pretreatment for lignocellulosic biomass was investigated using soybean hulls as the substrate. The enzyme cocktail used to hydrolyze pretreated soybean hulls to fermentable sugars was optimized using response surface methodology (RSM). Structural changes in substrate and sugar yields from thermo-mechanical processing were compared with two traditional pretreatment methods that utilized dilute acid (1% sulfuric acid) and alkali (1% sodium hydroxide). Extrusion processing parameters (barrel temperature, in-barrel moisture, screw speed) and processing aids (starch, ethylene glycol) were studied with respect to reducing sugar and glucose yields. The conditions resulting in the highest cellulose to glucose conversion (95%) were screw speed 350 rpm, maximum barrel temperature 80 °C and in-barrel moisture content 40% wb. Compared with untreated soybean hulls, glucose yield from enzymatic hydrolysis of soybean hulls increased by 69.6%, 128.7% and 132.2%, respectively, when pretreated with dilute acid, alkali and extrusion.  相似文献   

17.
Auto‐fluorescent mapping of plant cell walls was used to visualize cellulose and lignin in pristine switchgrass (Panicum virgatum) stems to determine the mechanisms of biomass dissolution during ionic liquid pretreatment. The addition of ground switchgrass to the ionic liquid 1‐n‐ethyl‐3‐methylimidazolium acetate resulted in the disruption and solubilization of the plant cell wall at mild temperatures. Swelling of the plant cell wall, attributed to disruption of inter‐ and intramolecular hydrogen bonding between cellulose fibrils and lignin, followed by complete dissolution of biomass, was observed without using imaging techniques that require staining, embedding, and processing of biomass. Subsequent cellulose regeneration via the addition of an anti‐solvent, such as water, was observed in situ and provided direct evidence of significant rejection of lignin from the recovered polysaccharides. This observation was confirmed by chemical analysis of the regenerated cellulose. In comparison to untreated biomass, ionic liquid pretreated biomass produces cellulose that is efficiently hydrolyzed with commercial cellulase cocktail with high sugar yields over a relatively short time interval. Biotechnol. Bioeng. 2009; 104: 68–75 Published 2009 Wiley Periodicals, Inc.  相似文献   

18.
The cellulose synthase (CESA) membrane complex synthesizes microfibrils of cellulose that surround all plant cells. Cellulose is made of sugar (β,1‐4 glucan) and accessing the sugar in cellulose for biofuels is of critical importance to stem the use of fossil fuels and avoid competition with food crops and pristine lands associated with starch‐based biofuel production. The recalcitrance of cellulose to enzymatic conversion to a fermentable form of sugar is related to the degree of hydrogen bonding or crystallization of the glucan chain. Herein, we isolate the first viable low biomass‐crystallinity mutant by screening for altered cell wall structure using X‐ray scattering as well as screening for enzymatic conversion efficiency on a range of cell wall mutants in the model plant Arabidopsis thaliana (L.) Heynh. Through detailed analysis of the kinetics of bioconversion we identified a mutant that met both selection criteria. This mutant is ixr1‐2, which contains a mutation in a highly conserved consensus sequence among the C‐terminal transmembrane regions within CESA3. A 34% lower biomass crystallization index and 151% improvement in the efficiency of conversion from raw biomass to fermentable sugars was measured relative to that of wild type (Col‐0). Recognizing the inherent ambiguities with an insoluble complex substrate like cellulose and how little is still understood regarding the regulation of CESA we propose a general model for how to manipulate CESA enzymes to improve the recalcitrance of cellulose to enzymatic hydrolysis. This study also raises intriguing possibilities as to the functional importance of transmembrane anchoring in CESA complex and microfibril formation.  相似文献   

19.
Abstract Cellulosic ethanol has been identified as a crucial biofuel resource due to its sustainability and abundance of cellulose feedstocks. However, current methods to obtain glucose from lignocellulosic biomass are ineffective due to recalcitrance of plant biomass. Insects have evolved endogenous and symbiotic enzymes to efficiently use lignocellulosic material as a source of metabolic glucose. Even though traditional biochemical methods have been used to identify and characterize these enzymes, the advancement of genomic and proteomic research tools are expected to allow new insights into insect digestion of cellulose. This information is highly relevant to the design of improved industrial processes of biofuel production and to identify potential new targets for development of insecticides. This review describes the diverse methodologies used to detect, quantify, purify, clone and express cellulolytic enzymes from insects, as well as their advantages and limitations.  相似文献   

20.
Biological processing of cellulosic biomass to fuels and chemicals would open up major new agricultural markets and provide powerful societal benefits, but pretreatment operations essential to economically viable yields have a major impact on costs and performance of the entire system. However, little comparative data is available on promising pretreatments. To aid in selecting appropriate systems, leading pretreatments based on ammonia explosion, aqueous ammonia recycle, controlled pH, dilute acid, flowthrough, and lime were evaluated in a coordinated laboratory program using a single source of corn stover, the same cellulase enzyme, shared analytical methods, and common data interpretation approaches to make meaningful comparisons possible for the first time. Each pretreatment made it possible to subsequently achieve high yields of glucose from cellulose by cellulase enzymes, and the cellulase formulations used were effective in solubilizing residual xylan left in the solids after each pretreatment. Thus, overall sugar yields from hemicellulose and cellulose in the coupled pretreatment and enzymatic hydrolysis operations were high for all of the pretreatments with corn stover. In addition, high-pH methods were found to offer promise in reducing cellulase use provided hemicellulase activity can be enhanced. However, the substantial differences in sugar release patterns in the pretreatment and enzymatic hydrolysis operations have important implications for the choice of process, enzymes, and fermentative organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号