首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Expression of bone morphogenetic proteins during membranous bone healing   总被引:16,自引:0,他引:16  
For the reconstructive plastic surgeon, knowledge of the molecular biology underlying membranous fracture healing is becoming increasingly vital. Understanding the complex patterns of gene expression manifested during the course of membranous fracture repair will be crucial to designing therapies that augment poor fracture healing or that expedite normal osseous repair by strategic manipulation of the normal course of gene expression. In the current study, we present a rat model of membranous bone repair. This model has great utility because of its technical simplicity, reproducibility, and relatively low cost. Furthermore, it is a powerful tool for analysis of the molecular regulation of membranous bone repair by immunolocalization and/or in situ hybridization techniques. In this study, an osteotomy was made within the caudal half of the hemimandible, thus producing a stable bone defect without the need for external or internal fixation. The healing process was then catalogued histologically in 28 Sprague-Dawley rats that were serially killed at 1, 2, 3, 4, 5, 6, and 8 weeks after operation. Furthermore, using this novel model, we analyzed, within the context of membranous bone healing, the temporal and spatial expression patterns of several members of the bone morphogenetic protein (BMP) family, known to be critical regulators of cells of osteoblast lineage. Our data suggest that BMP-2/-4 and BMP-7, also known as osteogenic protein-1 (OP-1), are expressed by osteoblasts, osteoclasts, and other more primitive mesenchymal cells within the fracture callus during the early stages of membranous fracture healing. These proteins continue to be expressed during the process of bone remodeling, albeit less prominently. The return of BMP-2/-4 and OP-1 immunostaining to baseline intensity coincides with the histological appearance of mature lamellar bone. Taken together, these data underscore the potentially important regulatory role played by the bone morphogenetic proteins in the process of membranous bone repair.  相似文献   

2.
The bone marrow is believed to play important roles during fracture healing such as providing progenitor cells for inflammation, matrix remodeling, and cartilage and bone formation. Given the complex nature of bone repair, it remains difficult to distinguish the contributions of various cell types. Here we describe a mouse model based on bone marrow transplantation and genetic labeling to track cells originating from bone marrow during fracture healing. Following lethal irradiation and engraftment of bone marrow expressing the LacZ transgene constitutively, wild type mice underwent tibial fracture. Donor bone marrow-derived cells, which originated from the hematopoietic compartment, did not participate in the chondrogenic and osteogenic lineages during fracture healing. Instead, the donor bone marrow contributed to inflammatory and bone resorbing cells. This model can be exploited in the future to investigate the role of inflammation and matrix remodeling during bone repair, independent from osteogenesis and chondrogenesis.  相似文献   

3.
Extracellular matrix (ECM) remodeling is important during bone development and repair. Because matrix metalloproteinase 13 (MMP13, collagenase-3) plays a role in long bone development, we have examined its role during adult skeletal repair. In this study we find that MMP13 is expressed by hypertrophic chondrocytes and osteoblasts in the fracture callus. We demonstrate that MMP13 is required for proper resorption of hypertrophic cartilage and for normal bone remodeling during non-stabilized fracture healing, which occurs via endochondral ossification. However, no difference in callus strength was detected in the absence of MMP13. Transplant of wild-type bone marrow, which reconstitutes cells only of the hematopoietic lineage, did not rescue the endochondral repair defect, indicating that impaired healing in Mmp13-/- mice is intrinsic to cartilage and bone. Mmp13-/- mice also exhibited altered bone remodeling during healing of stabilized fractures and cortical defects via intramembranous ossification. This indicates that the bone phenotype occurs independently from the cartilage phenotype. Taken together, our findings demonstrate that MMP13 is involved in normal remodeling of bone and cartilage during adult skeletal repair, and that MMP13 may act directly in the initial stages of ECM degradation in these tissues prior to invasion of blood vessels and osteoclasts.  相似文献   

4.
BACKGROUND: An in vivo gene therapy strategy was developed to accelerate bone fracture repair. METHODS: Direct injection of a murine leukemia virus-based vector targeted transgene expression to the proliferating periosteal cells arising shortly after fracture. Cyclooxygenase-2 (Cox-2) was selected because the transgene for its prostaglandin products that promote angiogenesis, bone formation and bone resorption, are all required for fracture healing. The human (h) Cox-2 transgene was modified to remove AU-rich elements in the 3'-untranslated region and to improve protein translation. RESULTS: In vitro studies revealed robust and sustained Cox-2 protein expression, prostaglandin E(2) and alkaline phosphatase production in rat bone marrow stromal cells and osteoblasts transgenic for the hCox-2 gene. In vivo studies in the rat femur fracture revealed that Cox-2 transgene expression produced bony union of the fracture by 21 days post-fracture, a time when cartilage persisted within the fracture tissues of control animals and approximately 1 week earlier than the healing normally observed in this model. None of the ectopic bone formation associated with bone morphogenetic protein gene therapy was observed. CONCLUSIONS: This study represents the first demonstration that a single local application of a retroviral vector expressing a single osteoinductive transgene consistently accelerated fracture repair.  相似文献   

5.
Fracture healing is a complex event that involves the coordination of a variety of different processes. Repair is typically characterized by four overlapping stages: the initial inflammatory response, soft callus formation, hard callus formation, initial bony union and bone remodeling. However, repair can also be seen to represent a juxtaposition of two distinct forces: anabolism or tissue formation, and catabolism or remodeling. These anabolic/catabolic concepts are useful for understanding bone repair without giving the false impression of temporally distinct stages that operate independently. They are also relevant when considering intervention. In normal bone development, bone remodeling conventionally refers to the removal of calcified bone tissue by osteoclasts. However, in the context of bone repair there are two phases of tissue catabolism: the removal of the initial cartilaginous soft callus, followed by the eventual remodeling of the bony hard callus. In this review, we have attempted to examine catabolism/remodeling in fractures in a systematic fashion. The first section briefly summarizes the traditional four-stage view of fracture repair in a physiological manner. The second section highlights some of the limitations of using a temporal rather than process-driven model and summarizes the anabolic/catabolic paradigm of fracture repair. The third section examines the cellular participants in soft callus remodeling and in particular the role of the osteoclast in endochondral ossification. Finally, the fourth section examines the effects of delaying osteoclast-dependent hard callus remodeling and also poses questions regarding the crosstalk between anabolism and catabolism in the latter stages of fracture repair.  相似文献   

6.
Poorly healing mandibular fractures and osteotomies can be troublesome complications of craniomaxillofacial trauma and reconstructive surgery. Gene therapy may offer ways of enhancing bone formation by altering the expression of desired growth factors and extracellular matrix molecules. The elucidation of suitable candidate genes for therapeutic intervention necessitates investigation of the endogenously expressed patterns of growth factors during normal (i.e., successful) fracture repair. Transforming growth factor beta1 (TGF-beta1), its receptor (Tbeta-RII), and the extracellular matrix proteins osteocalcin and type I collagen are thought to be important in long-bone (endochondral) formation, fracture healing, and osteoblast proliferation. However, the spatial and temporal expression patterns of these molecules during membranous bone repair remain unknown. In this study, 24 adult rats underwent mandibular osteotomy with rigid external fixation. In addition, four identically treated rats that underwent sham operation (i.e., no osteotomy) were used as controls. Four experimental animals were then killed at each time point (3, 5, 7, 9, 23, and 37 days after the procedure) to examine gene expression of TGF-beta1 and Tbeta-RII, osteocalcin, and type I collagen. Northern blot analysis was used to compare gene expression of these molecules in experimental animals with that in control animals (i.e., nonosteotomized; n = 4). In addition, TGF-beta1 and T-RII proteins were immunolocalized in an additional group of nine animals killed on postoperative days 3, 7, and 37. The results of Northern blot analysis demonstrated a moderate increase (1.7 times) in TGF-beta1 expression 7 days postoperatively; TGF-beta1 expression returned thereafter to near baseline levels. Tbeta-RII mRNA expression was downregulated shortly after osteotomy but then increased, reaching a peak of 1.8 times the baseline level on postoperative day 9. Osteocalcin mRNA expression was dramatically downregulated shortly after osteotomy and remained low during the early phases of fracture repair. Osteocalcin expression trended slowly upward as healing continued, reaching peak expression by day 37 (1.7 times the control level). In contrast, collagen type IalphaI mRNA expression was acutely downregulated shortly after osteotomy, peaked on postoperative days 5, and then decreased at later time points. Histologic samples from animals killed 3 days after osteotomy demonstrated TGF-beta1 protein localized to inflammatory cells and extracellular matrix within the fracture gap, periosteum, and peripheral soft tissues. On postoperative day 7, TGF-beta1 staining was predominantly localized to the osteotomized bone edges, periosteum, surrounding soft tissues, and residual inflammatory cells. By postoperative day 37, complete bony healing was observed, and TGF-beta1 staining was localized to the newly formed bone matrix and areas of remodeling. On postoperative day 3, Tbeta-RII immunostaining localized to inflammatory cells within the fracture gap, periosteal cells, and surrounding soft tissues. By day 7, Tbeta-RII staining localized to osteoblasts of the fracture gap but was most intense within osteoblasts and mesenchymal cells of the osteotomized bone edges. On postoperative day 37, Tbeta-RII protein was seen in osteocytes, osteoblasts, and the newly formed periosteum in the remodeling bone. These observations agree with those of previous in vivo studies of endochondral bone formation, growth, and healing. In addition, these results implicate TGF-beta1 biological activity in the regulation of osteoblast migration, differentiation, and proliferation during mandibular fracture repair. Furthermore, comparison of these data with gene expression during mandibular distraction osteogenesis may provide useful insights into the treatment of poorly healing fractures because distraction osteogenesis has been shown to be effective in the management of these difficult clinical cases.  相似文献   

7.
Genetic studies have identified a high bone mass of phenotype in both human and mouse when canonical Wnt signaling is increased. Secreted frizzled related protein 1 (sFRP1) is one of several Wnt antagonists and among the loss‐of‐function mouse models in which 32‐week‐old mice exhibit a high bone mass phenotype. Here we show that impact fracture healing is enhanced in this mouse model of increased Wnt signaling at a physiologic level in young (8 weeks) sFRP1?/? mice which do not yet exhibit significant increases in BMD. In vivo deletion of sFRP1 function improves fracture repair by promoting early bone union without adverse effects on the quality of bone tissue reflected by increased mechanical strength. We observe a dramatic reduction of the cartilage callous, increased intramembranous bone formation with bone bridging by 14 days, and early bone remodeling during the 28‐day fracture repair process in the sFRP1?/? mice. Our molecular analyses of gene markers indicate that the effect of sFRP1 loss‐of‐function during fracture repair is to accelerate bone healing after formation of the initial hematoma by directing mesenchymal stem cells into the osteoblast lineage via the canonical pathway. Further evidence to support this conclusion is the observation of maximal sFRP1 levels in the cartilaginous callus of a WT mouse. Hence sFRP1?/? mouse progenitor cells are shifted directly into the osteoblast lineage. Thus, developing an antagonist to specifically inhibit sFRP1 represents a safe target for stimulating fracture repair and bone formation in metabolic bone disorders, osteoporosis and aging. J. Cell. Physiol. 220: 174–181, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

8.

Objective

Glucocorticoids at pharmacological doses have been shown to interfere with fracture repair. The role of endogenous glucocorticoids in fracture healing is not well understood. We examined whether endogenous glucocorticoids affect bone healing in an in vivo model of cortical defect repair.

Methods

Experiments were performed using a well characterised mouse model in which intracellular glucocorticoid signalling was disrupted in osteoblasts through transgenic overexpression of 11β-hydroxysteroid-dehydrogenase type 2 (11β-HSD2) under the control of a collagen type I promoter (Col2.3-11β-HSD2). Unicortical bone defects (∅0.8 mm) were created in the tibiae of 7-week-old male transgenic mice and their wild-type littermates. Repair was assessed via histomorphometry, immunohistochemistry and microcomputed tomography (micro-CT) analysis at 1-3 weeks after defect creation.

Results

At week 1, micro-CT images of the defect demonstrated formation of mineralized intramembranous bone which increased in volume and density by week 2. At week 3, healing of the defect was nearly complete in all animals. Analysis by histomorphometry and micro-CT revealed that repair of the bony defect was similar in Col2.3-11β-HSD2 transgenic animals and their wild-type littermates at all time-points.

Conclusion

Disrupting endogenous glucocorticoid signalling in mature osteoblasts did not affect intramembranous fracture healing in a tibia defect repair model. It remains to be shown whether glucocorticoid signalling has a role in endochondral fracture healing.  相似文献   

9.
Bone tissue has an exceptional quality to regenerate to native tissue in response to injury. However, the fracture repair process requires mechanical stability or a viable biological microenvironment or both to ensure successful healing to native tissue. An improved understanding of the molecular and cellular events that occur during bone repair and remodeling has led to the development of biologic agents that can augment the biological microenvironment and enhance bone repair. Orthobiologics, including stem cells, osteoinductive growth factors, osteoconductive matrices, and anabolic agents, are available clinically for accelerating fracture repair and treatment of compromised bone repair situations like delayed unions and nonunions. Preclinical and clinical studies using biologic agents like recombinant bone morphogenetic proteins have demonstrated an efficacy similar or better than that of autologous bone graft in acute fracture healing. A lack of standardized outcome measures for comparison of biologic agents in clinical fracture repair trials, frequent off-label use, and a limited understanding of the biological activity of these agents at the bone repair site have limited their efficacy in clinical applications.  相似文献   

10.
Bone tissue has an exceptional quality to regenerate to native tissue in response to injury. However, the fracture repair process requires mechanical stability or a viable biological microenvironment or both to ensure successful healing to native tissue. An improved understanding of the molecular and cellular events that occur during bone repair and remodeling has led to the development of biologic agents that can augment the biological microenvironment and enhance bone repair. Orthobiologics, including stem cells, osteoinductive growth factors, osteoconductive matrices, and anabolic agents, are available clinically for accelerating fracture repair and treatment of compromised bone repair situations like delayed unions and nonunions. Preclinical and clinical studies using biologic agents like recombinant bone morphogenetic proteins have demonstrated an efficacy similar or better than that of autologous bone graft in acute fracture healing. A lack of standardized outcome measures for comparison of biologic agents in clinical fracture repair trials, frequent off-label use, and a limited understanding of the biological activity of these agents at the bone repair site have limited their efficacy in clinical applications.  相似文献   

11.
12.

Background

Fracture healing is orchestrated by a specific set of events that culminates in the repair of bone and reachievement of its biomechanical properties. The aim of our work was to study the sequence of gene expression events involved in inflammation and bone remodeling occurring in the early phases of callus formation in osteoporotic patients.

Methodology/Principal Findings

Fifty-six patients submitted to hip replacement surgery after a low-energy hip fracture were enrolled in this study. The patients were grouped according to the time interval between fracture and surgery: bone collected within 3 days after fracture (n = 13); between the 4th and 7th day (n = 33); and after one week from the fracture (n = 10). Inflammation- and bone metabolism-related genes were assessed at the fracture site. The expression of pro-inflammatory cytokines was increased in the first days after fracture. The genes responsible for bone formation and resorption were upregulated one week after fracture. The increase in RANKL expression occurred just before that, between the 4th–7th days after fracture. Sclerostin expression diminished during the first days after fracture.

Conclusions

The expression of inflammation-related genes, especially IL-6, is highest at the very first days after fracture but from day 4 onwards there is a shift towards bone remodeling genes, suggesting that the inflammatory phase triggers bone healing. We propose that an initial inflammatory stimulus and a decrease in sclerostin-related effects are the key components in fracture healing. In osteoporotic patients, cellular machinery seems to adequately react to the inflammatory stimulus, therefore local promotion of these events might constitute a promising medical intervention to accelerate fracture healing.  相似文献   

13.
Fracture healing is a specialized post-natal repair process that recapitulates aspects of embryological skeletal development. While many of the molecular mechanisms that control cellular differentiation and growth during embryogenesis recur during fracture healing, these processes take place in a post-natal environment that is unique and distinct from those which exist during embryogenesis. This Prospect Article will highlight a number of central biological processes that are believed to be crucial in the embryonic differentiation and growth of skeletal tissues and review the functional role of these processes during fracture healing. Specific aspects of fracture healing that will be considered in relation to embryological development are: (1) the anatomic structure of the fracture callus as it evolves during healing; (2) the origins of stem cells and morphogenetic signals that facilitate the repair process; (3) the role of the biomechanical environment in controlling cellular differentiation during repair; (4) the role of three key groups of soluble factors, pro-inflammatory cytokines, the TGF-beta superfamily, and angiogenic factors, during repair; and (5) the relationship of the genetic components that control bone mass and remodeling to the mechanisms that control skeletal tissue repair in response to fracture.  相似文献   

14.
The literature about the effects of systemically administered calcitonin on fracture healing and in the prevention of disuse osteoporosis after fracture are reviewed in this study. Fracture healing is a biological process of great importance for the survival of the injured animal. Endochondral ossification is augmented in the fracture site followed by fast remodeling of the produced woven bone. There is strong evidence of the direct effects of calcitonin on cartilage proliferation as well as the vascularization of the callus. Calcitonin is found to promote the cartilaginous phase of fracture healing. On the other hand, the innervation of callus reveals an extensive distribution of sensory fibers containing a calcitonin gene-related peptide, a neuropeptide with potent vasodilatory actions. From several experimental studies, salmon calcitonin administration has been found to have a beneficial effect on fracture healing. Studies in humans also concur that calcitonin may speed up the time of fracture repair and facilitate early mobilization of the injured limb. Finally, calcitonin prevents post-fracture bone loss due to increased post-injury remodeling and lowers hydroxyproline and calcium excretion of patients who underwent internal fixation of fracture on the hip.  相似文献   

15.
Phenomenological computational models of tissue regeneration and bone healing have been only partially successful in predicting experimental observations. This may be a result of simplistic modeling of cellular activity. Furthermore, phenomenological models are limited when considering the effects of combined physical and biological interventions. In this study, a new model of cell and tissue differentiation, using a more mechanistic approach, is presented and applied to fracture repair. The model directly couples cellular mechanisms to mechanical stimulation during bone healing and is based on the belief that the cells act as transducers during tissue regeneration. In the model, the cells within the matrix proliferate, differentiate, migrate, and produce extracellular matrix, all at cell-phenotype specific rates, based on the mechanical stimulation they experience. The model is assembled from coupled partial differentiation equations, which are solved using a newly developed finite element formulation. The evolution of four cell types, i.e. mesenchymal stem cells, fibroblasts, chondrocytes and osteoblasts, and the production of extracellular matrices of fibrous tissue, cartilage and bone are calculated. The material properties of the tissues are iteratively updated based on actual amounts of extracellular matrix in material elements at progressive time points. A two-dimensional finite element model of a long bone osteotomy was used to evaluate the model's potential. The additional value of the presented model and the importance of including cell-phenotype specific activities when modeling tissue differentiation and bone healing, were demonstrated by comparing the predictions with phenomenological models. The model's capacity was established by showing that it can correctly predict several aspects of bone healing, including cell and tissue distributions during normal fracture healing. Furthermore, it was able to predict experimentally established alterations due to excessive mechanical stimulation, periosteal stripping and impaired effects of cartilage remodeling.  相似文献   

16.
In this study, we explored the effects of mesenchymal stem cells (MSCs) from bone marrow overexpressing heme oxygenase‐1 (HO‐1) on the damaged human intestinal epithelial barrier in vitro. Rat MSCs were isolated from bone marrow and transduced with rat HO‐1 recombinant adenovirus (HO‐MSCs) for stable expression of HO‐1. Colorectal adenocarinoma 2 (Caco2) cells were treated with tumor necrosis factor‐α (TNF‐α) to establish a damaged colon epithelial model. Damaged Caco2 were cocultured with MSCs, Ad‐MSCs, Ad‐HO + MSCs or HO‐MSCs. mRNA and protein expression of Zona occludens‐1 (ZO‐1) and human HO‐1 and the release of cytokines were measured. ZO‐1 and human HO‐1 in Caco2 were significantly decreased after treatment with TNF‐α; and this effect was reduced when coculture with MSCs from bone marrow. Expression of ZO‐1 was not significantly affected by Caco2 treatment with TNF‐α, Ad‐HO, and MSCs. In contrast, ZO‐1 and human HO‐1 increased significantly when the damaged Caco2 was treated with HO‐MSCs. HO‐MSCs showed the strongest effect on the expression of ZO‐1 in colon epithelial cells. Coculture with HO‐MSCs showed the most significant effects on reducing the expression of IL‐2, IL‐6, IFN‐γ and increasing the expression of IL‐10. HO‐MSCs protected the intestinal epithelial barrier, in which endogenous HO‐1 was involved. HO‐MSCs play an important role in the repair process by reducing the release of inflammatory cytokines and increasing the release of anti‐inflammatory factors. These results suggested that HO‐MSCs from bone marrow were more effective in repairing the damaged intestinal epithelial barrier, and the effectiveness of MSCs was improved by HO‐1 gene transduction, which provides favorable support for the application of stem cell therapy in the intestinal diseases.  相似文献   

17.
骨形态发生蛋白-7(BMP-7)是具有强诱骨活性的蛋白质因子,已通过基因工程技术在体外得到表达,较长时间以来不断被应用于骨损伤疾病的研究,得到了确切的治疗效果。通过载体将BMP-7基因转入真核细胞,与生物聚合载体复合后植入体内,能表达并分泌活性的BMP-7,诱导骨细胞的生成,促进骨组织的修复,成为一种新的有效的治疗手段。  相似文献   

18.
目的:探讨DEXA对骨髓炎骨缺损治疗中骨痂密度的评价及意义。方法:严格按照纳入排除标准,选取21例骨髓炎清创后伴大段皮质骨缺损一期植骨的病人。术后4,6,8,10个月后对骨折端骨痂行双能X线骨密度仪检测,并进行X摄片以及Enneking评分,从而明确植骨区愈合骨痂的密度变化趋势,骨愈合情况以及症状改善情况。结果:(1)X线摄片结果显示:4个月后:骨缺损区依然清晰可见,内有少量稀疏骨痂通过,少量外骨痂形成。6个月后:植骨区内骨痂含量明显增多,且外骨痂膨大。8个月:缺损区模糊,有较致密骨痂生成,且外骨痂逐渐减少。10个月:植骨区骨痂更加致密,且部份髓腔再通。(2)Enneking评分:患者术后第10个月功能恢复情况评估正常功能20例,20分以下的患者1例。(3)BMD测定:骨折端的骨密度及骨密度比率随时间延长而增加,植骨10个月后患侧的骨密度已可基本上达到正常对照侧的骨密度水平。结论:双能X线骨密度测量从一定程度上反映出骨痂的力学强度特性。在感染性骨缺损治疗中可以作为检测植骨区的恢复情况的参考。  相似文献   

19.
Bone tissue has a significant potential for healing, which involves a significant the interplay between bone and immune cells. While fracture healing represents a useful model to investigate endochondral bone healing, intramembranous bone healing models are yet to be developed and characterized. In this study, a micro-computed tomography, histomorphometric and molecular (RealTimePCRarray) characterization of post tooth-extraction alveolar bone healing was performed on C57Bl/6 WT mice. After the initial clot dominance (0h), the development of a provisional immature granulation tissue is evident (7d), characterized by marked cell proliferation, angiogenesis and inflammatory cells infiltration; associated with peaks of growth factors (BMP-2-4-7,TGFβ1,VEGFa), cytokines (TNFα, IL-10), chemokines & receptors (CXCL12, CCL25, CCR5, CXCR4), matrix (Col1a1-2, ITGA4, VTN, MMP1a) and MSCs (CD105, CD106, OCT4, NANOG, CD34, CD146) markers expression. Granulation tissue is sequentially replaced by more mature connective tissue (14d), characterized by inflammatory infiltrate reduction along the increased bone formation, marked expression of matrix remodeling enzymes (MMP-2-9), bone formation/maturation (RUNX2, ALP, DMP1, PHEX, SOST) markers, and chemokines & receptors associated with healing (CCL2, CCL17, CCR2). No evidences of cartilage cells or tissue were observed, strengthening the intramembranous nature of bone healing. Bone microarchitecture analysis supports the evolving healing, with total tissue and bone volumes as trabecular number and thickness showing a progressive increase over time. The extraction socket healing process is considered complete (21d) when the dental socket is filled by trabeculae bone with well-defined medullary canals; it being the expression of mature bone markers prevalent at this period. Our data confirms the intramembranous bone healing nature of the model used, revealing parallels between the gene expression profile and the histomorphometric events and the potential participation of MCSs and immune cells in the healing process, supporting the forthcoming application of the model for the better understanding of the bone healing process.  相似文献   

20.
Early signals for fracture healing   总被引:3,自引:0,他引:3  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号