首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
  1. Download : Download high-res image (174KB)
  2. Download : Download full-size image
  相似文献   

2.
3.
Zinc finger protein genes in the mouse genome   总被引:1,自引:0,他引:1  
  相似文献   

4.
Many viral proteins are presently known to modulate the protective responses in the host organism. The genomes of Poxviridae have the greatest number of genes coding for proteins that suppress the inflammatory response, action of interferons, immune response, and other protective reactions. This review considers the poxviral immunomodulating proteins: TNF-, chemokine-, and complement-binding proteins and serine protease inhibitors. These proteins demonstrate therapeutic effects in animal models of autoimmune and inflammatory conditions. The applicability of poxviral immunomodulating proteins to treatment of autoimmune and inflammatory disorders in humans is discussed.  相似文献   

5.
6.
Zhang Z  Smith BA  Wang L  Brock A  Cho C  Schultz PG 《Biochemistry》2003,42(22):6735-6746
We recently developed a method for genetically incorporating unnatural amino acids site-specifically into proteins expressed in Escherichia coli in response to the amber nonsense codon. Here we describe the selection of an orthogonal tRNA-TyrRS pair that selectively and efficiently incorporates m-acetyl-l-phenylalanine into proteins in E. coli. We demonstrate that proteins containing m-acetyl-l-phenylalanine or p-acetyl-l-phenylalanine can be selectively labeled with hydrazide derivatives not only in vitro but also in living cells. The labeling reactions are selective and in general proceed with yields of >75%. In specific examples, m-acetyl-l-phenylalanine was substituted for Lys7 of the cytoplasmic protein Z domain, and for Arg200 of the outer membrane protein LamB, and the mutant proteins were selectively labeled with a series of fluorescent dyes. The genetic incorporation of a nonproteinogenic "ketone handle" into proteins provides a powerful tool for the introduction of biophysical probes for the structural and functional analysis of proteins in vitro or in vivo.  相似文献   

7.
人工锌指核酸酶介导的基因组定点修饰技术   总被引:2,自引:0,他引:2  
Xiao A  Hu YY  Wang WY  Yang ZP  Wang ZX  Huang P  Tong XJ  Zhang B  Lin S 《遗传》2011,33(7):665-683
锌指核酸酶(ZFN)由锌指蛋白(ZFP)结构域和Fok I核酸内切酶的切割结构域人工融合而成,是近年来发展起来的一种可用于基因组定点改造的分子工具。ZFN可识别并结合特定的DNA序列,并通过切割这一序列的特定位点造成DNA的双链断裂(DSB)。在此基础上,人们可以对基因组的特定位点进行各种遗传操作,包括基因打靶、基因定点插入、基因修复等,从而能够方便快捷地对基因组实现靶向遗传修饰。这种新的基因组定点修饰方法的突出优势是适用性好,对物种没有选择性,并且可以在细胞和个体水平进行遗传操作。文章综述了ZFN技术的研究进展及应用前景,重点介绍ZFN的结构与作用机制、现有的靶点评估及锌指蛋白库的构建与筛选方法、基因组定点修饰的策略,以及目前利用这一技术已成功实现突变的物种及内源基因,为开展这一领域的研究工作提供参考。  相似文献   

8.
Zinc finger proteins: getting a grip on RNA   总被引:11,自引:0,他引:11  
C2H2 (Cys-Cys-His-His motif) zinc finger proteins are members of a large superfamily of nucleic-acid-binding proteins in eukaryotes. On the basis of NMR and X-ray structures, we know that DNA sequence recognition involves a short alpha helix bound to the major groove. Exactly how some zinc finger proteins bind to double-stranded RNA has been a complete mystery for over two decades. This has been resolved by the long-awaited crystal structure of part of the TFIIIA-5S RNA complex. A comparison can be made with identical fingers in a TFIIIA-DNA structure. Additionally, the NMR structure of TIS11d bound to an AU-rich element reveals the molecular details of the interaction between CCCH fingers and single-stranded RNA. Together, these results contrast the different ways that zinc finger proteins bind with high specificity to their RNA targets.  相似文献   

9.
Zinc finger proteins as designer transcription factors   总被引:5,自引:0,他引:5  
  相似文献   

10.
Two recent papers outline improvements in gene editing technology that may facilitate the analysis of signaling networks important for development. The systems developed by both Thyagarajan and coworkers (Thyagarajan et al., 2007) in Nature Biotechnology, and Lombardo and colleagues (Lombardo et al., 2007) in Stem Cells, have the potential to advance our understanding of human embryonic stem cells.  相似文献   

11.
The modification of mammalian genomes is an important goal in gene therapy and animal transgenesis. To generate stable genetic and biochemical changes, the therapeutic genes or transgenes need to be incorporated into the host genome. Ideally, the integration of the foreign gene should occur at sites that ensure their continual expression in the absence of any unwanted side effects on cellular metabolism. In this article, we discuss the opportunities provided by natural DNA-modifying enzymes, such as transposases, recombinases and integrases, to mediate the stable integration of foreign genes into host genomes. In addition, we discuss the approaches that have been taken to improve the efficiency and to modify the site-specificity of these enzymes.  相似文献   

12.
Custom-designed zinc finger nucleases (ZFNs), proteins designed to cut at specific DNA sequences, are becoming powerful tools in gene targeting—the process of replacing a gene within a genome by homologous recombination (HR). ZFNs that combine the non-specific cleavage domain (N) of FokI endonuclease with zinc finger proteins (ZFPs) offer a general way to deliver a site-specific double-strand break (DSB) to the genome. The development of ZFN-mediated gene targeting provides molecular biologists with the ability to site-specifically and permanently modify plant and mammalian genomes including the human genome via homology-directed repair of a targeted genomic DSB. The creation of designer ZFNs that cleave DNA at a pre-determined site depends on the reliable creation of ZFPs that can specifically recognize the chosen target site within a genome. The (Cys2His2) ZFPs offer the best framework for developing custom ZFN molecules with new sequence-specificities. Here, we explore the different approaches for generating the desired custom ZFNs with high sequence-specificity and affinity. We also discuss the potential of ZFN-mediated gene targeting for ‘directed mutagenesis’ and targeted ‘gene editing’ of the plant and mammalian genome as well as the potential of ZFN-based strategies as a form of gene therapy for human therapeutics in the future.  相似文献   

13.
Modern drug discovery strongly depends on the availability of target proteins in sufficient amounts and with desired properties. For some applications, proteins have to be produced with specific modifications such as tags for protein purification, fluorescent or radiometric labels for detection, glycosylation and phosphorylation for biological activity, and many more. It is well known that covalent modifications can have adverse effects on the biological activity of some target proteins. It is therefore one of the major challenges in protein chemistry to generate covalent modifications without affecting the biological activity of the target protein. Current procedures for modification mostly rely on non-specific labelling of lysine or cysteine residues on the protein of interest, but alternative approaches dedicated to site-specific protein modification are being developed and might replace most of the commonly used methodologies. In this study, we investigated two novel methods where target proteins can be expressed in E. coli with a fusion partner that allows protein modification in a covalent and highly selective manner. Firstly, we explored a method based on the human DNA repair protein O6-alkylguanine-DNA alkyltransferase (hAGT) as a fusion tag for site-directed attachment of small molecules. The AGT-tag (SNAP-tag) can accept almost any chemical moiety when it is attached to the guanine base through a benzyl group. In our experiments we were able to label a target protein fused to the AGT-tag with various fluorophores coupled to O6-benzylguanine. Secondly, we tested in vivo and in vitro site-directed biotinylation with two different tags, consisting of either 15 (AviTag) or 72 amino acids (BioEase tag), which serve as a substrate for bacterial biotin ligase birA. When birA protein was co-expressed in E. coli biotin was incorporated almost completely into a model protein which carried these recognition tags at its C-terminus. The same findings were also obtained with in vitro biotinylation assays using pure birA independently over-expressed in E. coli and added to the biotinylation reaction in the test tube. For both biotinylation methods, peptide mapping and LC-MS proved the highly site-specific modification of the corresponding tags. Our results indicate that these novel site-specific labelling reactions work in a highly efficient manner, allow almost quantitative labelling of the target proteins, have no deleterious effect on the biological activity and are easy to perform in standard laboratories.  相似文献   

14.
15.
Guo X  Wu Z  Guo Z 《Bioconjugate chemistry》2012,23(3):650-655
A new method was developed for site-specific modifications of liposomes by proteins via sortase A (SrtA)-mediated transpeptidation reactions. In this regard, the enhanced green fluorescent protein (eGFP) was biologically engineered to carry at its polypeptide C-terminus the LPATG motif recognized by SrtA and used as the protein donor for linking to liposomes that were decorated with phospholipids carrying a diglycine motif as the other SrtA substrate and the eGFP acceptor. Under the influence of SrtA, eGFP was efficiently attached to liposomes, as proved by analyzing the enzymatic reaction products and the resultant fluorescent liposomes. It was observed that increasing the concentration and the distance of the diglycine motif on and from the liposome surface could significantly improve the efficiency of liposome modification by proteins. It is anticipated that this strategy can be widely useful for the modification of liposomes by other proteins.  相似文献   

16.
Proteins and peptides with low solubility and which aggregate are often encountered in biochemical studies and in pharmaceutical applications of polypeptides. Here, we report a new strategy to improve solubility and prevent aggregation of polypeptides using site-specific modification with the small molecule betaine, which contains a quaternary ammonium moiety. Betaine was site-selectively attached to the N-termini of two aggregation-prone polypeptide models, the bacterial enzyme xanthine-guanine phosphoribosyltransferase (CG-GPRT) and the HIV entry inhibitor peptide CG-T20, utilizing native chemical ligation. N-terminal cysteines for the betaine ligation reactions were generated from His-tagged fusion proteins using TEV protease cleavage. Ligation of the betaine thioester (1) to the N-terminal cysteine-containing polypeptide models proceeded in high yield, though denaturing conditions were required for CG-T20 due to the hydrophobic nature of this peptide. CD spectroscopy and GPRT activity assays indicate that the betaine modification of CG-GPRT and CG-T20 does not significantly affect structure or activity of the polypeptides. Solubility and turbidity measurements of betaine-modified and unmodified polypeptides demonstrate that betaine modification can greatly increase solubility. Finally, it is shown that betaine-modified CG-T20 acts as an inhibitor of the aggregation of unmodified CG-T20.  相似文献   

17.
A variety of technological advances in recent years have made permanent genetic manipulation of an organism a technical possibility. As the details of natural biological processes for genome modification are elucidated, the enzymes catalyzing these events (transposases, recombinases, integrases and DNA repair enzymes) are being harnessed or modified for the purpose of intentional gene modification. Targeted integration and gene repair can be mediated by the DNA-targeting specificity inherent to a particular enzyme, or rely on user-designed specificities. Integration sites can be defined by using DNA base-pairing or protein-DNA interaction as a means of targeting. This review will describe recent progress in the development of 'user-targetable' systems, particularly highlighting the application of custom DNA-binding proteins or nucleic acid homology to confer specificity.  相似文献   

18.
Targeted modification of the genome is an important genetic tool, which can be achieved via homologous, non-homologous or site-specific recombination. Although numerous efforts have been made, such a tool does not exist for routine applications in plants. This work describes a simple and useful method for targeted mutagenesis or gene targeting, tailored to floral-dip transformation in Arabidopsis, by means of specific protein expression in the egg cell. Proteins stably or transiently expressed under the egg apparatus-specific enhancer (EASE) were successfully localized to the area of the egg cell. Moreover, a zinc-finger nuclease expressed under EASE induced targeted mutagenesis. Mutations obtained under EASE control corresponded to genetically independent events that took place specifically in the germline. In addition, RAD54 expression under EASE led to an approximately 10-fold increase in gene targeting efficiency, when compared with wild-type plants. EASE-controlled gene expression provides a method for the precise engineering of the Arabidopsis genome through temporally and spatially controlled protein expression. This system can be implemented as a useful method for basic research in Arabidopsis, as well as in the optimization of tools for targeted genetic modifications in crop plants.  相似文献   

19.
Molecular Biology Reports - Zinc finger proteins encompass one of the unique and large families of proteins with diversified biological functions in the human body. These proteins are primarily...  相似文献   

20.
In the past decade, numerous chemical technologies have been developed to allow the site-specific post-translational modification of proteins. Traditionally covalent chemical protein modification has been accomplished by the attachment of synthetic groups to nucleophilic amino acids on protein surfaces. These chemistries, however, are rarely sufficiently selective to distinguish one residue within a literal sea of chemical functionality. One solution to this problem is to introduce a unique chemical handle into the target protein that is orthogonal to the remainder of the proteome. In practice, this handle can be a novel peptide sequence, which forms a 'tag' that is selectively and irreversibly modified by enzymes. Furthermore, if the enzymes can tolerate substrate analogs, it becomes possible to engineer chemically modified proteins in a site-specific fashion. This review details the significant progress in creating techniques for the chemoenzymatic generation of protein-small molecule constructs and provides examples of novel applications of these methodologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号