首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genetic-physical mapping of a photosynthetic gene cluster from R. capsulata   总被引:39,自引:0,他引:39  
K M Zsebo  J E Hearst 《Cell》1984,37(3):937-947
  相似文献   

2.
The homology of Rhodopseudomonas capsulata DNA segments carrying photosynthesis genes with sequences present in total DNA from certain other photosynthetic and non-photosynthetic bacterial species was determined by hybridization. R. capsulata DNA fragments that carry loci for production of peptide components of the photosynthetic reaction center and light-harvesting I antenna complex were found to hybridize to DNA from some photosynthetic species. However, fragments that carry carotenoid or bacteriochlorophyll biosynthesis genes showed either weak or undetectable heterospecific hybridization under the conditions employed.  相似文献   

3.
Summary R. leguminosarum trp alleles mapped by R68.45-mediated recombination were located in three distinct chromosomal regions. We isolated three derivatives of R68.45 that carried different trp genes of R. meliloti. Each of the plasmids suppressed all of the R. leguminosarum trp alleles in a particular region. The R-primes were transferred to strains of P. aeruginosa carrying mutations in different trp genes. The plasmid pAJ24JI suppressed trpA, B and F mutants, pAJ73JI suppressed trpC and D and pAJ88JI suppressed a trpE mutant. When the R-primes were transferred to E. coli trp strains they failed to suppress any trp mutants. A derivative of pAJ24JI was isolated which was able to suppress trpA and F mutants of E. coli.  相似文献   

4.
Functional genes coding for the structural components of the nitrogenase complex (nifH,D,K) have been cloned on an 11.8-kilobase-pair HindIII fragment of DNA from the photosynthetic bacterium Rhodopseudomonas capsulata. The genes were physically mapped by hybridization of individual cloned nif genes from Klebsiella pneumoniae and Anabaena sp. strain 7120 to Southern blots of HindIII digests of the cloned R. capsulata fragment, after introduction of HindIII sites into the latter at specified locations by insertion of Tn5. Plasmids with the 11.8-kilobase-pair HindIII fragment containing the Tn5 insertions were also used for complementation tests with chromosomal Nif- mutations and for the generation of subfragments to locate those mutations by marker rescue. The R. capsulata nifH,D,K genes comprise a single unit of expression, with the same organization and polarity as found in K. pneumoniae. However, the R. capsulata nifH,D,K fragment did not complement Nif- point mutations in the corresponding Klebsiella genes, and the Klebsiella nif genes did not function in R. capsulata.  相似文献   

5.
In vivo genetic engineering by R' plasmid formation was used to isolate an Escherichia coli gene that restored the Ntr+ phenotype to Ntr- mutants of the photosynthetic bacterium Rhodobacter capsulatus (formerly Rhodopseudomonas capsulata; J. F. Imhoff, H. G. Trüper, and N. Pfenning, Int. J. Syst. Bacteriol. 34:340-343, 1984). Nucleotide sequencing of the gene revealed no homology to the ntr genes of Klebsiella pneumoniae. Furthermore, hybridization experiments between the cloned gene and different F' plasmids indicated that the gene is located between 34 and 39 min on the E. coli genetic map and is therefore unlinked to the known ntr genes. The molecular weight of the gene product, deduced from the nucleotide sequence, was 30,563. After the gene was cloned in an expression vector, the gene product was purified. It was shown to have a pI of 5.8 and to behave as a dimer during gel filtration and on sucrose density gradients. Antibodies raised against the purified protein revealed the presence of this protein in R. capsulatus strains containing the E. coli gene, but not in other strains. Moreover, elimination of the plasmid carrying the E. coli gene from complemented strains resulted in the loss of the Ntr+ phenotype. Complementation of the R. capsulatus mutations by the E. coli gene therefore occurs in trans and results from the synthesis of a functional gene product.  相似文献   

6.
Electron micrographs of phenol-water-extracted lipopolysaccharide (LPS) of Rhodopseudomonas capsulata show filamentous and netlike aggregates. Treatment of the LPS with sodium deoxycholate resulted in a reversible splitting into subunits. The LPS represents a cell wall constituent with O-antigenic specificity. In passive hemagglutination tests, high titers were obtained when erythrocytes sensitized with untreated or heat-treated LPS were incubated with antisera obtained by immunization of rabbits with whole cells of R. capsulata. The alkali-treated LPS was not active in this test. Mouse lethality tests have shown that the LPS of R. capsulata is less toxic than LPS of Escherichia coli. Also, the X-ray protection efficacy and the phagocytic activity stimulation of LPS from R. capsulata in mice are small, as compared with LPS of E. coli. Incubation of living bacteria in saline (37 C) resulted in a solubilization of an LPS-protein-lipid complex from the outer layer of the cell wall. The isolated complex contained the components which were found in the LPS. In addition, 20% amino acids and a large amount of palmitic and stearic acids, which are typical phospholipid components, were present.  相似文献   

7.
After enrichment by a tetracycline suicide under conditions nonpermissive for the growth of mutants defective in photosynthesis, colonies were screened for enhanced fluorescence in near-infrared light by using high-speed infrared photography. Twenty mutants were isolated, and the chromatophore membranes were analyzed by a new, rapid microprocedure that revealed many different phenotypes among the mutants. The enhanced fluorescence mutants typically possessed a functional light-harvesting II antenna, but showed reduced or absent light-harvesting I. Twelve isolates were also defective in reaction center polypeptides. An R-prime plasmid that bears 50 kilobases of Rhodopseudomonas capsulata DNA coding for components of the photosynthetic apparatus (B. L. Marrs, J. Bacteriol. 146:1003-1012, 1981), pRPS404, complemented all 20 enhanced fluorescence mutants as demonstrated by the quenching of fluorescence in mutants that had received the R-prime plasmid by conjugation. Fluorescence was regained upon loss of the 50-kilobase insert. Complementation of the fluorescent lesions implies that most or all of the genes necessary for the expression of the reaction center and the light-harvesting antennae are carried by the R-prime plasmid and that these genes are actively transcribed in the homologous organism. All 20 mutants are complemented by one of two pBR322 subclones of the R-prime plasmid, pRPSEB2 or pRPSE2. pRPSEB2 bears a 4.5-kilobase fragment of R. capsulata DNA including the rxcA locus, and pRPSE2 is a pBR322 derivative bearing a 7.5-kilobase R. capsulata DNA fragment bearing the rxcB locus. These fragments therefore carry sequences necessary for the normal synthesis of the light-harvesting and reaction center polypeptide complexes.  相似文献   

8.
ABSTRACT: BACKGROUND: Plating methods are still the golden standard in microbiology; however, some studies have shown that these techniques can underestimate the microbial concentrations and diversity. A nutrient shock is one of the mechanisms proposed to explain this phenomenon. In this study, a tentative method to assess nutrient shock effects was tested. FINDINGS: To estimate the extent of nutrient shock effects, two strains isolated from tap water (Sphingomonas capsulata and Methylobacterium sp.) and two culture collection strains (E. coli CECT 434 and Pseudomonas fluorescens ATCC 13525) were exposed both to low and high nutrient conditions for different times and then placed in low nutrient medium (R2A) and rich nutrient medium (TSA). The average improvement (A.I.) of recovery between R2A and TSA for the different times was calculated to more simply assess the difference obtained in culturability between each medium. As expected, A.I. was higher when cells were plated after the exposition to water than when they were recovered from high-nutrient medium showing the existence of a nutrient shock for the diverse bacteria used. S. capsulata was the species most affected by this phenomenon. CONCLUSIONS: This work provides a method to consistently determine the extent of nutrient shock effects on different microorganisms and hence quantify the ability of each species to deal with sudden increases in substrate concentration.  相似文献   

9.
The complete nucleotide sequence (8867 bp) and the deduced polypeptide sequence are given for 11 proteins from the photosynthetic gene cluster of R. capsulata (46 kb), including the photosynthetic reaction-center L, M, and H subunits and the B870 alpha and B870 beta polypeptides (light-harvesting I). These polypeptides bind bacteriochlorophyll, bacteriopheophytin, carotenoids, and quinones that are involved in the primary light reactions of photosynthesis. Hydropathy plots indicate that the L and M subunits are transmembrane proteins that may cross the membrane five times, while the H subunit has only one hydrophobic section near the amino terminus, which may be transmembrane. The L and M subunits are homologous over their entire length and have a high degree of homology with the QB protein from photosystem II of higher plants. An additional six genes were identified that may have some unknown role in bioenergetics since only mutations that affect the differentiation of the photosynthetic apparatus are known to map to this gene cluster.  相似文献   

10.
Gene transfer in seven pathogenic enteric bacteria was studied using an RP4: :mini-Mu element, the plasmid pULB113. From the E. coli K-12 host strain the plasmid could be efficiently transferred to these enteric bacteria, but its transfer back to E. coli K-12 was not as efficient, being detected only in Shigella dysenteriae 1, S. flexneri and the 'smooth' variant of S. sonnei. In these three species, transposition of chromosomal fragments into the plasmid to produce R-prime plasmid was also detected at a frequency of approximately 10(-5). Transposition was random as suggested by the recovery at approximately the same frequency (10(-5) to 10(-6)) of R-primes involving 20 different auxotrophic markers from widely separated chromosomal locations. Formation of R-prime plasmids expressing toxicity in the E. coli K-12 recipient strain was also efficient in S. dysenteriae 1 but the toxin-activity was rapidly lost from these R-primes. In our experiments, the plasmid pULB113 incorporated relatively small amounts of chromosomal DNA as determined by restriction endonuclease digestion. For a Thy+ R-prime that we analyzed, the amount of cloned DNA was approximately 15 kb.  相似文献   

11.
The structural genes for the Rieske Fe-S protein (petA), cytochrome b (petB) and cytochrome c1 (petC) subunits of the ubiquinol:cytochrome c2 oxidoreductase (bc1 complex) of Rhodopseudomonas capsulata have been cloned by complementation, using a mutant defective in this complex. The location of these genes on the obtained plasmid, pR14A, was determined using synthetic mixed oligonucleotide probes corresponding to highly conserved amino acid sequences of these proteins from various organisms. Their correct identity was established by partial sequencing. The petA, petB and petC genes were found to lie close to each other in this order, spanning two adjacent EcoRI fragments of 2.7 X 10(3) and 1.3 X 10(3) base-pairs, respectively. An insertion-deletion mutation, covering most of petB and all of petC and an insertion mutation, located in petB were constructed in vitro and were introduced into the chromosome of an otherwise wild-type strain by gene transfer agent-mediated genetic crosses. The bc-1 mutants obtained were defective in photosynthesis but, as expected, they could grow by respiration because of a branched respiratory pathway. Therefore, in R. capsulata a functional bc1 complex is essential in vivo for photosynthesis but not for respiration. Further, in the respiratory pathway the branch point must be before the bc1 complex, most likely at the quinone pool. These mutants were also proficient in anaerobic growth in the presence of dimethylsulfoxide, indicating that a functional bc1 complex is not required for this pathway. Several other insertions and deletions, located outside of the pet gene cluster, were also constructed. The ability of these latter mutants to grow photosynthetically suggested that no other gene essential for photosynthesis is located in the proximity of the pet cluster. The plasmid pR14A was shown to complement in trans the bc-1 insertion or insertion-deletion mutants, indicating that the pet genes were expressed in R. capsulata. Cross-hybridization experiments showed that the pet cluster was quite distinct from other known genes involved in photosynthesis.  相似文献   

12.
L Isaki  R Beers    H C Wu 《Journal of bacteriology》1990,172(11):6512-6517
The lsp gene encoding prolipoprotein signal peptidase (signal peptidase II) is organized into an operon consisting of ileS and three open reading frames, designated genes x, orf149, and orf316 in both Escherichia coli and Enterobacter aerogenes. A plasmid, pBROC128, containing a 5.8-kb fragment of Pseudomonas fluorescens DNA was found to confer pseudomonic acid resistance on E. coli host cells and to contain the structural gene of ileS from P. fluorescens. In addition, E. coli strains carrying pBROC128 exhibited increased globomycin resistance. This indicated that the P. fluorescens lsp gene was present on the plasmid. The nucleotide sequences of the P. fluorescens lsp gene and of its flanking regions were determined. Comparison of the nucleotide sequences of the lsp genes in E. coli and P. fluorescens revealed two highly conserved domains in this enzyme. Furthermore, the five genes which constitute an operon in E. coli and Enterobacter aerogenes were found in P. fluorescens in the same order as in the first two species.  相似文献   

13.
Chen X  Yuan H  Chen R  Zhu L  Du B  Weng Q  He G 《Plant & cell physiology》2002,43(8):869-876
Triacontanol (TRIA) is a saturated long-chain alcohol that is known to have a growth promoting activity when exogenously supplied to a number of plants. In this study, dry weight, protein and chlorophyll contents of rice seedlings were increased by foliar application of TRIA. Leaf net photosynthesis rate (Pn) was increased very quickly and persistently at a given photon flux density (PFD). The TRIA-regulated genes in rice were isolated from cDNA library by differential screening with probes generated from the forward- and reverse-suppression subtractive hybridization (SSH) populations and confirmed by Northern blot. Sequence analysis revealed that most of the up-regulated genes encoded the photosynthetic and photorespiratory proteins. Two down-regulated genes were identified as those encoding an ABA- and stress-related protein and a wounding-related protein. These results suggested that TRIA up-regulated the photosynthesis process and suppressed stresses in rice plants. Time-course profiles of expression of rbcS isogenes suggested the complex mechanisms involved in the regulation of photosynthesis promoted by TRIA.  相似文献   

14.
The glutamine synthetase of the phototrophic bacterium Rhodopseudomonas capsulata E1F1 was purified to homogeneity by a procedure which used a single affinity chromatography step. Like enzymes from other photosynthetic procaryotes, native glutamine synthetase from R. capsulata E1F1 was found to be a dodecameric protein of approximately 660 kilodaltons with identical subunits of about 55 kilodaltons each. The Stokes radius and S20,w of the native enzyme were 8.35 nm and 19.20, respectively. The enzyme exhibited different aggregation states with detectable oligomers of 1, 2, 3, 4, 6, 8, 10, and 12 subunits. Disaggregation of the glutamine synthetase occurred after the native protein was subjected to electrophoresis in polyacrylamide gels, as well as occurring spontaneously at low ionic strength. Glutamine synthetase from R. capsulata E1F1 was regulated by an adenylylation-deadenylylation mechanism, and the adenylylation state of the protein depended on the nitrogen source, growth phase, and light intensity. Ammonia repressed glutamine synthetase, whereas glycine, serine, alanine, valine, and aspartate were noncompetitive inhibitors of the glutamine synthetase biosynthetic activity.  相似文献   

15.
Following chemical mutagenesis and screening for the inability to grow by photosynthesis and the absence of cyt cbb3 oxidase activity, two c-type cytochrome (cyt)-deficient mutants, 771 and K2, of Rhodobacter capsulatus were isolated. Both mutants were completely deficient in all known c-type cyts, and could not be complemented by the previously known cyt c biogenesis genes of R. capsulatus. Complementation of 771 and K2 with a wild-type chromosomal library led to the identification of two novel genes, cycJ and ccdA respectively. The cycJ is highly homologous to ccmE/cycJ, encountered in various Gram-negative species. Unlike in other species, where cycJ is a part of an operon essential for cyt c biogenesis, in R. capsulatus, it is located immediately downstream from argC, involved in arginine biosynthesis. Mutation of its universally conserved histidine residue, which is critical for its proposed haem chaperoning role, to an alanine led to loss of its function. All R. capsulatus cycJ mutants studied so far excrete copious amounts of coproporphyrin and protoporphyrin when grown on enriched media, suggesting that its product is also a component of the haem delivery branch of cyt c biogenesis in this species. In contrast, the R. capsulatus ccdA was homologous to the cyt c biogenesis gene ccdA, found in the gram-positive bacterium Bacillus subtilis, and to the central region of dipZ, encoding a protein disulphide reductase required for cyt c biogenesis in Escherichia coli. Membrane topology of CcdA was established in R. capsulatus using ccdA:phoA and ccdA :lacZ gene fusions. The deduced topology revealed that the two conserved cysteine residues of CcdA are, as predicted, membrane embedded. Mutagenesis of these cysteines showed that both are required for the function of CcdA in cyt c biogenesis. This study demonstrated for the first time that CcdA homologues are also required for cyt c biogenesis in some gram-negative bacteria such as R. capsulatus.  相似文献   

16.
17.
Twenty-four genes from Salmonella typhimurium that affect DNA replication were isolated from a lambda-Salmonella genomic library by lysogenic complementation of temperature-sensitive mutants of Salmonella or E. coli, using a new plaque complementation assay. The complementing lambda clones, which make red plaques in this assay, and noncomplementing mutant derivatives, which make uncolored plaques, were used to further characterize the temperature-sensitive Salmonella mutants and to establish the functional similarity of E. coli and Salmonella DNA replication genes. For 17 of 18 E. coli mutants representing distinct loci, a Salmonella gene that complemented the mutant was found. This result indicates that single Salmonella replication proteins are able to function in otherwise all E. coli replication complexes and suggests that the detailed properties of Salmonella and E. coli replication proteins are very similar. The other seven Salmonella genes that were cloned were unrelated functionally to any E. coli genes examined. --As an aid to the derivation of chromosomal mutations affecting some of the cloned genes, a general method was developed for placing a transposon in the Salmonella chromosome in a segment corresponding to cloned DNA. Chromosomal mutations were derived in Salmonella affecting a gene (dnaA) that was cloned by complementation of an E. coli mutant by using the transposon-encoded drug resistance as a selectable marker in local mutagenesis.  相似文献   

18.
In Escherichia coli, the MarA protein controls expression of multiple chromosomal genes affecting resistance to antibiotics and other environmental hazards. For a more-complete characterization of the mar regulon, duplicate macroarrays containing 4,290 open reading frames of the E. coli genome were hybridized to radiolabeled cDNA populations derived from mar-deleted and mar-expressing E. coli. Strains constitutively expressing MarA showed altered expression of more than 60 chromosomal genes: 76% showed increased expression and 24% showed decreased expression. Although some of the genes were already known to be MarA regulated, the majority were newly determined and belonged to a variety of functional groups. Some of the genes identified have been associated with iron transport and metabolism; other genes were previously known to be part of the soxRS regulon. Northern blot analysis of selected genes confirmed the results obtained with the macroarrays. The findings reveal that the mar locus mediates a global stress response involving one of the largest networks of genes described.  相似文献   

19.
A DNA fragment carrying the genes coding for a novel EcoT38I restriction endonuclease (R.EcoT38I) and EcoT38I methyltransferase (M.EcoT38I), which recognize G(A/G)GC(C/T)C, was cloned from the chromosomal DNA of Escherichia coli TH38. The endonuclease and methyltransferase genes were in a head-to-head orientation and were separated by a 330-nucleotide intergenic region. A third gene, the C.EcoT38I gene, was found in the intergenic region, partially overlapping the R.EcoT38I gene. The gene product, C.EcoT38I, acted as both a positive regulator of R.EcoT38I gene expression and a negative regulator of M.EcoT38I gene expression. M.EcoT38I purified from recombinant E. coli cells was shown to be a monomeric protein and to methylate the inner cytosines in the recognition sequence. R.EcoT38I was purified from E. coli HB101 expressing M.EcoT38I and formed a homodimer. The EcoT38I restriction (R)-modification (M) system (R-M system) was found to be inserted between the A and Q genes of defective bacteriophage P2, which was lysogenized in the chromosome at locI, one of the P2 phage attachment sites observed in both E. coli K-12 MG1655 and TH38 chromosomal DNAs. Ten strains of E. coli TH38 were examined for the presence of the EcoT38I R-M gene on the P2 prophage. Conventional PCR analysis and assaying of R activity demonstrated that all strains carried a single copy of the EcoT38I R-M gene and expressed R activity but that diversity of excision in the ogr, D, H, I, and J genes in the defective P2 prophage had arisen.  相似文献   

20.
The lpd gene encoding lipoamide dehydrogenase (dihydrolipoamide dehydrogenase; EC 1.8.1.4) was isolated from a library of Pseudomonas fluorescens DNA cloned in Escherichia coli TG2 by use of serum raised against lipoamide dehydrogenase from Azotobacter vinelandii. Large amounts (up to 15% of total cellular protein) of the P. fluorescens lipoamide dehydrogenase were produced by the E. coli clone harbouring plasmid pCJB94 with the lipoamide dehydrogenase gene. The enzyme was purified to homogeneity by a three-step procedure. The gene was subcloned from plasmid pCJB94 and the complete nucleotide sequence of the subcloned fragment (3610 bp) was determined. The derived amino acid sequence of P. fluorescens lipoamide dehydrogenase showed 84% and 42% homology when compared to the amino acid sequences of lipoamide dehydrogenase from A. vinelandii and E. coli, respectively. The lpd gene of P. fluorescens is clustered in the genome with genes for the other components of the 2-oxoglutarate dehydrogenase complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号