首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
2.
Type I signal peptidase (SPase I) catalyzes the cleavage of the amino-terminal signal sequences from preproteins destined for cell export. Preproteins contain a signal sequence with a positively charged n-region, a hydrophobic h-region, and a neutral but polar c-region. Despite having no distinct consensus sequence other than a commonly found c-region "Ala-X-Ala" motif preceding the cleavage site, signal sequences are recognized by SPase I with high fidelity. Remarkably, other potential Ala-X-Ala sites are not cleaved within the preprotein. One hypothesis is that the source of this fidelity is due to the anchoring of both the SPase I enzyme (by way of its transmembrane segment) and the preprotein substrate (by the h-region in the signal sequence) in the membrane. This limits the enzyme-substrate interactions such that cleavage occurs at only one site. In this work we have, for the first time, successfully isolated Bacillus subtilis type I signal peptidase (SipS) and a truncated version lacking the transmembrane domain (SipS-P2). With purified full-length as well as truncated constructs of both B. subtilis and Escherichia coli (Lep) SPase I, in vitro specificity studies indicate that the transmembrane domains of either enzyme are not important determinants of in vitro cleavage fidelity, since enzyme constructs lacking them reveal no alternate site processing of pro-OmpA nuclease A substrate. In addition, experiments with mutant pro-OmpA nuclease A substrate constructs indicate that the h-region of the signal peptide is also not critical for substrate specificity. In contrast, certain mutants in the c-region of the signal peptide result in alternate site cleavage by both Lep and SipS enzymes.  相似文献   

3.
Angiotensin-converting enzyme 2 (ACE2 or ACEH) is a novel angiotensin-converting enzyme-related carboxypeptidase that cleaves a single amino acid from angiotensin I, des-Arg bradykinin, and many other bioactive peptides. Using des-Arg bradykinin as a template, we designed a series of intramolecularly quenched fluorogenic peptide substrates for ACE2. The general structure of the substrates was F-X-Q, in which F was the fluorescent group, Abz, Q was the quenching group (either Phe(NO(2)) or Tyr(NO(2))), and X was the intervening peptide. These substrates were selectively cleaved by recombinant human ACE2, as shown by MS and HPLC. Quenching efficiency increased as the peptide sequence was shortened from 8 to 3 aa, and also when Tyr(NO(2)) was used as a quenching group instead of Phe(NO(2)). Two of the optimized substrates, TBC5180 and TBC5182, produced a signal:noise ratio of better than 20 when hydrolyzed by ACE2. Kinetic measurements with ACE2 were as follows: TBC5180, K(m)=58 microM and k(cat)/K(m)=1.3x10(5)M(-1)s(-1); TBC5182, K(m)=23 microM and k(cat)/K(m)=3.5 x 10(4)M(-1)s(-1). Thus, based on hydrolysis rate, TBC5180 was a better substrate than TBC5182. However, TBC5180 was also hydrolyzed by ACE, whereas TBC5182 was not cleaved, suggesting that TBC5182 was a selective for ACE2. We conclude that these two peptides can be used as fluorescent substrates for high-throughput screening for selective inhibitors of ACE2 enzyme.  相似文献   

4.
We have previously demonstrated that Streptococcus pneumoniae signal peptidase (SPase) I catalyzes a self-cleavage to result in a truncated product, SPase37-204 [Peng, S.B., Wang, L., Moomaw, J., Peery, R.B., Sun, P.M., Johnson, R.B., Lu, J., Treadway, P., Skatrud, P.L. & Wang, Q.M. (2001) J. Bacteriol.183, 621-627]. In this study, we investigated the effect of phospholipid on invitro self-cleavage of S. pneumoniae SPase I. In the presence of phospholipid, the self-cleavage predominantly occurred at one cleavage site between Gly36-His37, whereas the self-cleavage occurred at multiple sites in the absence of phospholipid, and two additional self-cleavage sites, Ala65-His66 and Ala143-Phe144, were identified. All three self-cleavage sites strongly resemble the signal peptide cleavage site and follow the (-1, -3) rule for SPase I recognition. Kinetic analysis demonstrated that self-cleavage is a concentration dependent and intermolecular event, and the activity in the presence of phospholipid is 25-fold higher than that in the absence of phospholipid. Biochemical analysis demonstrated that SPase37-204, the major product of the self-cleavage totally lost activity to cleave its substrates, indicating that the self-cleavage resulted in the inactivation of the enzyme. More importantly, the self-cleavage was demonstrated to be happening in vivo in all the growth phases of S. pneumoniae cells. The bacterial cells keep the active SPase I at the highest level in exponential growth phase, suggesting that the self-cleavage may play an important role in regulating the activity of the enzyme under different conditions.  相似文献   

5.
Signal peptidase (SPase) I is responsible for the cleavage of signal peptides of many secreted proteins in bacteria. Because of its unique physiological and biochemical properties, it serves as a potential target for development of novel antibacterial agents. In this study, we report the production, isolation, and structure determination of a family of structurally related novel lipoglycopeptides from a Streptomyces sp. as inhibitors of SPase I. Detailed spectroscopic analyses, including MS and NMR, revealed that these lipoglycopeptides share a common 14-membered cyclic peptide core, an acyclic tripeptide chain, and a deoxy-alpha-mannose sugar, but differ in the degree of oxidation of the N-methylphenylglycine residue and the length and branching of the fatty acyl chain. Biochemical analysis demonstrated that these peptides are potent and competitive inhibitors of SPase I with K(i) 50 to 158 nm. In addition, they showed modest antibacterial activity against a panel of pathogenic Gram-positive and Gram-negative bacteria with minimal inhibitory concentration of 8-64 microm against Streptococcus pneumonniae and 4-8 microm against Escherichia coli. Notably, they mechanistically blocked the protein secretion in whole cells as demonstrated by inhibiting beta-lactamase release from Staphylococcus aureus. Taken together, the present discovery of a family of novel lipoglycopeptides as potent inhibitors of bacterial SPase I may lead to the development of a novel class of broad-spectrum antibiotics.  相似文献   

6.
An improved synthesis of fluorogenic substrate analogues for phosphatidylinositol-specific phospholipase C (PI-PLC) is described. The water-soluble substrates, which are derived from fluorescein, are not fluorescent until cleaved by the enzyme, and provide a convenient means to continuously monitor PI-PLC activity. The improvement in the synthesis lies in the method used to protect the hydroxyl groups of the inositol portion of the substrate molecule and allows a milder deprotection procedure to be used. The result is a much more reproducible synthesis of the substrate. The improved procedure has been employed to synthesize a series of fluorogenic substrates, which differ in the length of the aliphatic tail attached to the fluorescein portion of the molecule. The length of the tail was found to have a significant effect on the rate of cleavage of these substrates.  相似文献   

7.
Minimum substrate sequence for signal peptidase I of Escherichia coli   总被引:4,自引:0,他引:4  
The minimum substrate sequence recognized by signal peptidase I (SPase I or leader peptidase) was defined by measuring the kinetic parameters for a set of chemically synthesized peptides corresponding to the cleavage site of the precursor maltose binding protein (pro-MBP). The minimum sequence of a substrate hydrolyzed by SPase I at a measurable rate was the pentapeptide Ala-Leu-Ala decreases Lys-Ile. The rates of hydrolysis of this substrate, however, were several hundred-fold lower than those observed for the maturation of MBP in Escherichia coli, suggesting that in addition to these minimal sites involved in recognition, other features of pro-MBP are also needed for the optimal rate of signal peptide cleavage by SPase I. One parameter may be the length of the polypeptide chain. Studies of the synthetic peptides showed that decreasing the length of the polypeptide chain of substrates decreased the substrate efficiency measured as kcat/Km. However, in one case a decrease in the length of a peptide corresponding to -7 to +3 positions of pro-MBP to a nonapeptide (-7 to +2) increased the substrate efficiency by about 900-fold. The nonapeptide is the most efficient substrate for the enzyme in vitro so far reported. It is speculated that better peptide substrates are the ones which are able to adopt folded structures.  相似文献   

8.
The fifth domain (DV) of beta2-glycoprotein I (beta2GPI) is important for binding a number of ligands including phospholipids and factor XI (FXI). Beta2GPI is proteolytically cleaved in DV by plasmin but not by thrombin, VIIa, tissue plasminogen activator, or uPA. Following proteolytic cleavage of DV by plasmin, beta2GPI retains binding to FXI but not to phospholipids. Native beta2GPI, but not cleaved beta2GPI, inhibits activation of FXI by thrombin and factor XIIa, attenuating a positive feedback mechanism for additional thrombin generation. In this report, we have defined the FXI/FXIa binding site on beta2GPI using site-directed mutagenesis. We show that the positively charged residues Lys284, Lys286, and Lys287 in DV are essential for the interaction of beta2GPI with FXI/FXIa. We also demonstrate that FXIa proteolytically cleaves beta2GPI at Lys317-Thr318 in DV. Thus, FXIa cleavage of beta2GPI in vivo during thrombus formation may accelerate FXI activation by decreasing the inhibitory effect of beta2GPI.  相似文献   

9.
Type I signal peptidases (SPases) are membrane-bound endopeptidases responsible for the catalytic cleavage of signal peptides from secretory proteins. Here, we analysed the interaction between a bacterial type I SPase and preprotein substrates using surface plasmon resonance. The use of a home-made biosensor surface based on a mixed self-assembled monolayer of thiols on gold allowed qualitative and kinetic analysis. In vitro binding of purified preproteins to a covalently immobilised bacterial SPase was found to be rather efficient (apparent K(D)=10(-7)-10(-8)M). The signal peptide was shown to be a prerequisite for SPase binding and the nature of the mature part of the preprotein significantly affected SPase binding affinity. The developed biosensor containing immobilised SPase is of great importance for analysis of specificity at substrate binding level and for drug screening. In fact, this is the first report of a membrane protein that was covalently attached to a biosensor surface and that retained binding capacity.  相似文献   

10.
Bacterial protein secretion is a highly orchestrated process that is essential for infection and virulence. Despite extensive efforts to predict or experimentally detect proteins that are secreted, the characterization of the bacterial secretome has remained challenging. A central event in protein secretion is the type I signal peptidase (SPase)-mediated cleavage of the N-terminal signal peptide that targets a protein for secretion via the general secretory pathway, and the arylomycins are a class of natural products that inhibit SPase, suggesting that they may be useful chemical biology tools for characterizing the secretome. Here, using an arylomycin derivative, along with two-dimensional gel electrophoresis and liquid chromatography-tandem mass spectrometry (LC-MS/MS), we identify 11 proteins whose secretion from stationary-phase Staphylococcus epidermidis is dependent on SPase activity, 9 of which are predicted to be translated with canonical N-terminal signal peptides. In addition, we find that the presence of extracellular domains of lipoteichoic acid synthase (LtaS) and the β-lactam response sensor BlaR1 in the medium is dependent on SPase activity, suggesting that they are cleaved at noncanonical sites within the protein. In all, the data define the proteins whose stationary-phase secretion depends on SPase and also suggest that the arylomycins should be valuable chemical biology tools for the study of protein secretion in a wide variety of different bacteria.  相似文献   

11.
To understand the mechanism of the interaction between human beta(2)-glycoprotein I (beta(2)-GPI) and negatively charged phospholipids, we determined the three-dimensional solution structure of the fifth domain of beta(2)-GPI by heteronuclear multidimensional NMR. The results showed that the molecule is composed of well-defined four anti-parallel beta-strands and two short alpha-helices, as well as a long highly flexible loop. Backbone dynamic analysis demonstrated significant mobility of the flexible loop on a subnanosecond time scale. Structural modeling of the nicked fifth domain, in which the Lys317-Thr318 peptide bond was specifically cleaved, revealed the importance of this long C-terminal loop for the interaction between beta(2)-GPI and negatively charged phospholipids. A titration experiment with the anionic surfactant SDS showed that this highly mobile loop, as well as the short beta-hairpin between betaC and betaD strands, which is rich in positively charged residues, specifically interact with the surfactant. The mobile loop, together with the surrounding positively charged residues, probably construct the binding site for negatively charged phospholipids such as cardiolipin.  相似文献   

12.
Signal peptidase I (SPase I) is critical for the release of translocated preproteins from the membrane as they are transported from a cytoplasmic site of synthesis to extracytoplasmic locations. These proteins are synthesized with an amino-terminal extension, the signal sequence, which directs the preprotein to the Sec- or Tat-translocation pathway. Recent evidence indicates that the SPase I cleaves preproteins as they emerge from either pathway, though the steps involved are unclear. Now that the structure of many translocation pathway components has been elucidated, it is critical to determine how these components work in concert to support protein translocation and cleavage. Molecular modeling and NMR studies have provided insight on how the preprotein docks on SPase I in preparation for cleavage. This is a key area for future work since SPase I enzymes in a variety of species have now been identified and the inhibition of these enzymes by antibiotics is being pursued. The eubacterial SPase I is essential for cell viability and belongs to a unique group of serine endoproteases which utilize a Ser-Lys catalytic dyad instead of the prototypical Ser-His-Asp triad used by eukaryotes. As such, SPase I is a desirable antimicrobial target. Advances in our understanding of how the preprotein interfaces with SPase I during the final stages of translocation will facilitate future development of inhibitors that display a high efficacy against SPase I function.  相似文献   

13.
Although the annotation of the complete genome sequence of Mycoplasma pneumoniae did not reveal a bacterial type I signal peptidase (SPase I) we showed experimentally that such an activity must exist in this bacterium, by determining the N-terminus of the N-terminal gene product P40 of MPN142, formerly called ORF6 gene. Combining mass spectrometry with a method for sulfonating specifically the free amino terminal group of proteins, the cleavage site for a typical signal peptide was located between amino acids 25 and 26 of the P40 precursor protein. The experimental results were in agreement with the cleavage site predicted by computational methods providing experimental confirmation for these theoretical analyses.  相似文献   

14.
The substrate specificity of TcoCBc1 was evaluated using two internally quenched fluorescent peptide libraries with randomized sequences designed to detect carboxydipeptidase (Abz-GXXZXK(Dnp)-OH) and endopeptidase (Abz-GXXZXXQ-EDDnp) activities at acidic and neutral pHs, respectively. All the data obtained with TcoCBc1 were compared with those of human cathepsin B, including the pH profiles of the hydrolytic reactions. The most relevant observation is the preference of TcoCBc1 for substrates with a pair of acidic amino acids at positions P2 and P1 for its carboxydipeptidase activity and the well acceptance for E and D at P1 position for endopeptidase activity. These peculiar preferences for negatively charged groups of TcoCBc1 and its requirements for carboxydipeptidase activity were also observed on Abz labeled analogues of bradykinin (Abz-RPPGFSAFR-OH, Abz-RPPGFSAF-OH, Abz-RPPGDEAF-OH) and angiotensin I (Abz-DRVYIHAFHL-OH), where indicates the cleavage site. TcoCBc1 was modeled based on the atomic coordinates of the cathepsin B from Trypanosoma brucei and the positively charged environment in TcoCBc1 catalytic site contrasts with the negatively charged environment in human cathepsin B. The preferences of S1 and S2 subsites of TcoCBc1 for acidic amino acids have to be taken into consideration for future studies of physiological roles of TcoCBc1 as for instance in apoptotic processes of Trypanosoma congolense.  相似文献   

15.
Bacterial type I signal peptidase is a potential target for the development of novel antibacterial agents. In this study we demonstrate that a substrate based peptide aldehyde inhibits signal peptidases with a lower IC50 value than the lipopeptides described to date. The length of the core lipopeptide could be reduced by removing several amino acids from both termini. Conversion of this peptide to an aldehyde resulted in a molecule with an IC50 value of 0.09 μM when tested against Saccharomyces aureus SPase I, SpsB.  相似文献   

16.
Quenched fluorescence peptides were used to investigate the substrate specificity requirements for recombinant wild-type angiotensin I-converting enzyme (ACE) and two full-length mutants bearing a single functional active site (N- or C-domain). We assayed two series of bradykinin-related peptides flanked by o-aminobenzoic acid (Abz) and N-(2,4-dinitrophenyl)ethylenediamine (EDDnp), namely, Abz-GFSPFXQ-EDDnp and Abz-GFSPFRX-EDDnp (X = natural amino acids), in which the fluorescence appeared when Abz/EDDnp are separated by substrate hydrolysis. Abz-GFSPFFQ-EDDnp was preferentially hydrolyzed by the C-domain while Abz-GFSPFQQ-EDDnp exhibits higher N-domain specificity. Internally quenched fluorescent analogues of N-acetyl-SDKP-OH were also synthesized and assayed. Abz-SDK(Dnp)P-OH, in which Abz and Dnp (2,4-dinitrophenyl) are the fluorescent donor-acceptor pair, was cleaved at the D-K(Dnp) bond with high specificity by the ACE N-domain (k(cat)/K(m) = 1.1 microM(-)(1) s(-)(1)) being practically resistant to hydrolysis by the C-domain. The importance of hydroxyl-containing amino acids at the P(2) position for N-domain specificity was shown by performing the kinetics of hydrolysis of Abz-TDK(Dnp)P-OH and Abz-YDK(Dnp)P-OH. The peptides Abz-YRK(Dnp)P-OH and Abz-FRK(Dnp)P-OH which were hydrolyzed by wild-type ACE with K(m) values of 5.1 and 4.0 microM and k(cat) values of 246 and 210 s(-)(1), respectively, have been shown to be excellent substrates for ACE. The differentiation of the catalytic specificity of the C- and N-domains of ACE seems to depend on very subtle variations on substrate-specific amino acids. The presence of a free C-terminal carboxyl group or an aromatic moiety at the same substrate position determines specific interactions with the ACE active site which is regulated by chloride and seems to distinguish the activities of both domains.  相似文献   

17.
The phospholipid-binding plasma protein beta2-glycoprotein I (beta2-GPI) is the primary antigen recognized by the circulating autoantibodies in patients with the "anti-phospholipid syndrome" (APS). Although heparin is routinely used in the treatment and prophylaxis of APS patients, the primary heparin-binding site within beta2-GPI has not been identified. More importantly, how heparin exerts its beneficial effects in vivo in APS patients has not been deduced at the molecular level. Using an expression/site-directed mutagenesis approach, we now show that the positively charged site that resides in the first domain of beta2-GPI is not the primary heparin-binding site. Rather it is the second positively charged site located within the fifth domain of the protein that also binds to phospholipids. Lys(284), Lys(286), and Lys(287) in this domain are essential for the interaction of beta2-GPI with heparin. These data indicate that beta2-GPI binds to heparin in a relatively specific manner even though the affinity for the interaction is rather low. Lys(317) resides in the center of the high affinity phospholipid-binding site. Surprisingly, heparin at concentrations that can be achieved in vivo during anticoagulation therapy greatly enhances the plasmin-mediated cleavage of the Lys(317)-Thr(318) site in beta2-GPI. Because the cleaved form cannot bind to phospholipids effectively, the combined actions of heparin and plasmin result in a diminished ability of beta2-GPI to recognize phospholipids. This, in turn, decreases the prothrombotic activity of the endogenous circulating anti-beta2-GPI antibodies in the patients. Thus, heparin exerts its beneficial effects in APS patients by at least two distinct mechanisms.  相似文献   

18.
Type I signal peptidase (SPase I) catalyzes the hydrolytic cleavage of the N-terminal signal peptide from translocated preproteins. SPase I belongs to a novel class of Ser proteases that utilize a Ser/Lys dyad catalytic mechanism instead of the classical Ser/His/Asp triad found in most Ser proteases. Recent X-ray crystallographic studies indicate that the backbone amide nitrogen of the catalytic Ser 90 and the hydroxyl side chain of Ser 88 might participate as H-bond donors in the transition-state oxyanion hole. In this work, contribution of the side-chain Ser 88 in Escherichia coli SPase I to the stabilization of the transition state was investigated through in vivo and in vitro characterizations of Ala-, Cys-, and Thr-substituted mutants. The S88T mutant maintains near-wild-type activity with the substrate pro-OmpA nuclease A. In contrast, substitution with Cys at position 88 results in more than a 740-fold reduction in activity (k(cat)) whereas S88A retains much less activity (>2440-fold decrease). Measurements of the kinetic constants of the individual mutant enzymes indicate that these decreases in activity are attributed mainly to decreases in k(cat) while effects on K(m) are minimal. Thermal inactivation and CD spectroscopic analyses indicate no global conformational perturbations of the Ser 88 mutants relative to the wild-type E. coli SPase I enzyme. These results provide strong evidence for the stabilization by Ser 88 of the oxyanion intermediate during catalysis by E. coli SPase I.  相似文献   

19.
An efficient synthesis of new type fluorescent amino acids is described. The Fmoc-protected dyes can be prepared in a four-step procedure with approximately 30% overall yield from aminofluoresceins and other inexpensive commercially available precursors. The dyes are much more photostable compared to fluorescein and exhibit constant pH-independent fluorescence that is advantageous in biological applications. The Fmoc-protected fluorescent amino acids are ready for use in solid phase peptide synthesis. As a proof of concept, a fluorogenic papain substrate was synthesized and employed for on-bead detection of the protease activity. By using a novel technique for quantitative analysis of bead fluorescence, a approximately 2.7-fold increase in mean bead brightness was measured and was attributed to substrate cleavage by papain. The new type fluorescent amino acids seem to be a promising tool for the synthesis of fluorescent peptide ligands and fluorogenic protease substrates.  相似文献   

20.
A quantitative assay of beta-galactosidase activity in single cells of Saccharomyces cerevisiae has been developed using a fluorogenic substrate and flow cytometry [reported in Wittrup & Bailey, Cytometry, 9,394 (1988)]. The beta-galactosidase activity is expressed in yeast from the Escherichia coli lacZ gene under the control of the yeast GAL10 promoter, and is used as a marker for multicopy plasmid content. A nonfluorescent fluorogenic substrate is enzymatically cleaved by intracellular beta-galactosidase to form a fluorescent product. The accumulation of fluorescent product in single cells was found to depend on bulk substrate concentration and single-cell enzyme activity in a fashion that could not be described by a Michaelis-Menten kinetic rate form. It has been demonstrated that diffusion limitation rather than enzyme activity can determine the level of single-cell fluorescence under certain assay conditions, and a mathematical model has; been formulated which accounts for substrate and product diffusion. Guided by the mathematical model, the assay conditions were modified to allow measurement of single-cell enzyme activity rather than diffusion rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号