首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Pannexins form membrane channels that release biological signals to communicate with neighboring cells. Here, we report expression patterns of pannexin 1 (Panx1) and pannexin 2 (Panx2) in the olfactory epithelium and olfactory bulb of adult mice. In situ hybridization revealed that mRNAs for Panx1 and Panx2 were both expressed in the olfactory epithelium and olfactory bulb. Expression of Panx1 and Panx2 was mainly found in cell bodies below the sustentacular cell layer in the olfactory epithelium, indicating that Panx1 and Panx2 are expressed in mature and immature olfactory neurons, and basal cells. Expression of Panx2 was observed in sustentacular cells in a few locations of the olfactory epithelium. In the olfactory bulb, Panx1 and Panx2 were expressed in spatial patterns. Many mitral cells, tufted cells, periglomerular cells and granule cells were Panx1 and Panx2 positive. Mitral cells located at the dorsal and lateral portions of the olfactory bulb showed weak Panx1 expression compared with those in the medial side. However, the opposite was true for the distribution of Panx2 positive mitral cells. There were more Panx2 mRNA positive mitral cells and granule cells compared to those expressing Panx1. Our findings on pannexin expression in the olfactory system of adult mice raise the novel possibility that pannexins play a role in information processing in the olfactory system. Demonstration of expression patterns of pannexins in the olfactory system provides an anatomical basis for future functional studies.  相似文献   

2.
Zonal organization of the mammalian main and accessory olfactory systems   总被引:2,自引:0,他引:2  
Zonal organization is one of the characteristic features observed in both main and accessory olfactory systems. In the main olfactory system, most of the odorant receptors are classified into four groups according to their zonal expression patterns in the olfactory epithelium. Each group of odorant receptors is expressed by sensory neurons distributed within one of four circumscribed zones. Olfactory sensory neurons in a given zone of the epithelium project their axons to the glomeruli in a corresponding zone of the main olfactory bulb. Glomeruli in the same zone tend to represent similar odorant receptors having similar tuning specificity to odorants. Vomeronasal receptors (or pheromone receptors) are classified into two groups in the accessory olfactory system. Each group of receptors is expressed by vomeronasal sensory neurons in either the apical or basal zone of the vomeronasal epithelium. Sensory neurons in the apical zone project their axons to the rostral zone of the accessory olfactory bulb and form synaptic connections with mitral tufted cells belonging to the rostral zone. Signals originated from basal zone sensory neurons are sent to mitral tufted cells in the caudal zone of the accessory olfactory bulb. We discuss functional implications of the zonal organization in both main and accessory olfactory systems.  相似文献   

3.
Olfactory receptors (ORs) are expressed in sensory neurons of the nasal epithelium, where they are supposed to be involved in the recognition of suitable odorous compounds and in the guidance of outgrowing axons towards the appropriate glomeruli in the olfactory bulb. During development, some olfactory receptor subtypes have also been found in non-sensory tissues, including the cribriform mesenchyme between the prospective olfactory epithelium and the developing telencephalon, but it is elusive if this is a typical phenomenon for ORs. Monitoring the onset and time course of expression for several receptor subtypes revealed that 'extraepithelial' expression of ORs occurs very early and transiently, in particular between embryonic stages E10.25 and E14.0. In later stages, a progressive loss of receptor expressing cells was observed. Molecular phenotyping demonstrated that the receptor expressing cells in the cribriform mesenchyme co-express key elements, including Galpha(olf), ACIII and OMP, characteristic for olfactory neurons in the nasal epithelium. Studies on transgenic OMP/GFP-mice showed that 'extraepithelial' OMP/GFP-positive cells are located in close vicinity to axon bundles projecting from the nasal epithelium to the presumptive olfactory bulb. Moreover, these cells are primarily located where axons fasciculate and change direction towards the anterior part of the forebrain.  相似文献   

4.
Transregulation of erbB expression in the mouse olfactory bulb.   总被引:2,自引:0,他引:2  
Previously, we have shown that erbB-3 expression is restricted to the ensheathing cells of the olfactory nerve layer, while erbB-4 is found in the periglomerular and mitral/tufted cells of the olfactory bulb and in cells coming out from the rostral migratory stream of the subependymal layer. In the present work, we have treated adult mice with zinc sulfate intranasal irrigation and analyzed erbB-3 and erbB-4 expression in the deafferented olfactory bulb. Following treatment, olfactory axons undergo degeneration, as indicated by the loss of OMP expression in the deafferented olfactory bulb. The thickness of the olfactory nerve layer is reduced, but the specific intensity of erbB-3 labeling in the remaining olfactory nerve layer is increased with respect to control. Interestingly, following deafferentation, erbB-4 immunoreactivity decreases specifically in cell types that normally make synaptic contacts with primary olfactory neurons in the glomeruli, i.e. periglomerular and mitral/tufted cells. Partial lesion of the olfactory epithelium allows regenerative axon growth of olfactory neurons to the olfactory bulb. Following olfactory axon regeneration, erbB-3 and erbB-4 immunoreactivity in the olfactory bulb is similar to control. Thus, like tyrosine hydroxylase, the down regulation of erbB-4 expression in the periglomerular cells is reversible.  相似文献   

5.
Tabor R  Friedrich RW 《PloS one》2008,3(1):e1416
Although synaptic functions of ionotropic glutamate receptors in the olfactory bulb have been studied in vitro, their roles in pattern processing in the intact system remain controversial. We therefore examined the functions of ionotropic glutamate receptors during odor processing in the intact olfactory bulb of zebrafish using pharmacological manipulations. Odor responses of mitral cells and interneurons were recorded by electrophysiology and 2-photon Ca(2+) imaging. The combined blockade of AMPA/kainate and NMDA receptors abolished odor-evoked excitation of mitral cells. The blockade of AMPA/kainate receptors alone, in contrast, increased the mean response of mitral cells and decreased the mean response of interneurons. The blockade of NMDA receptors caused little or no change in the mean responses of mitral cells and interneurons. However, antagonists of both receptor types had diverse effects on the magnitude and time course of individual mitral cell and interneuron responses and, thus, changed spatio-temporal activity patterns across neuronal populations. Oscillatory synchronization was abolished or reduced by AMPA/kainate and NMDA receptor antagonists, respectively. These results indicate that (1) interneuron responses depend mainly on AMPA/kainate receptor input during an odor response, (2) interactions among mitral cells and interneurons regulate the total olfactory bulb output activity, (3) AMPA/kainate receptors participate in the synchronization of odor-dependent neuronal ensembles, and (4) ionotropic glutamate receptor-containing synaptic circuits shape odor-specific patterns of olfactory bulb output activity. These mechanisms are likely to be important for the processing of odor-encoding activity patterns in the olfactory bulb.  相似文献   

6.
J S Isaacson 《Neuron》1999,23(2):377-384
In the CNS, glutamate typically mediates excitatory transmission via local actions at synaptic contacts. In the olfactory bulb, mitral cell dendrites release glutamate at synapses formed only onto the dendrites of inhibitory granule cells. Here, I show excitatory transmission mediated solely by transmitter spillover between mitral cells in olfactory bulb slices. Dendritic glutamate release from individual mitral cells causes self-excitation via local activation of N-methyl-D-aspartate (NMDA) receptors. Paired recordings reveal that glutamate release from one cell generates NMDA receptor-mediated responses in neighboring mitral cells that are enhanced by blockade of glutamate uptake. Furthermore, spillover generates spontaneous NMDA receptor-mediated population responses. This simultaneous activation of neighboring mitral cells by a diffuse action of glutamate provides a mechanism for synchronizing olfactory principal cells.  相似文献   

7.
Viral upper respiratory infections are the most common cause of clinical olfactory dysfunction, but the pathogenesis of dysosmia after viral infection is poorly understood. Biopsies of the olfactory mucosa in patients that complain of dysosmia after viral infection fall into two categories: one in which no olfactory epithelium is seen and another in which the epithelium is disordered and populated mainly by immature neurons. We have used intranasal inoculation with an olfactory bulb line variant of MHV to study the consequences of viral infection on peripheral olfactory structures. MHV OBLV has little direct effect on the olfactory epithelium, but causes extensive spongiotic degeneration and destruction of mitral cells and interneurons in the olfactory bulb such that the axonal projection from the bulb via the lateral olfactory tract is markedly reduced. Moreover, surviving mitral cells apparently remain disconnected from the sensory neuron input to the glomerular layer, judging from retrograde labeling studies using Dil. The damage to the bulb indirectly causes a persistent, long-term increase in the turnover of sensory neurons in the epithelium, i.e. the relative proportion of immature to mature sensory neurons and the rate of basal cell proliferation both increase. The changes that develop after inoculation with MHV OBLV closely resemble the disordering of the olfactory epithelium in some patient biopsies. Thus, damage to the olfactory nerve or bulb may contribute to a form of post-viral olfactory dysfunction and MHV OBLV is a useful model for studying the pathogenesis of this form of dysosmia.  相似文献   

8.
This study investigated the relationship between olfactory morphology, habitat occupancy, and lifestyle in 21 elasmobranch species in a phylogenetic context. Four measures of olfactory capability, that is, the number of olfactory lamellae, the surface area of the olfactory epithelium, the mass of the olfactory bulb, and the mass of the olfactory rosette were compared between individual species and groups, comprised of species with similar habitat and/or lifestyle. Statistical analyses using generalized least squares phylogenetic regression revealed that bentho‐pelagic sharks and rays possess significantly more olfactory lamellae and larger sensory epithelial surface areas than benthic species. There was no significant correlation between either olfactory bulb or rosette mass and habitat type. There was also no significant difference between the number of lamellae or the size of the sensory surface area in groups comprised of species with similar diets, that is, groups preying predominantly on crustaceans, cephalopods, echinoderms, polychaetes, molluscs, or teleosts. However, some groups had significantly larger olfactory bulb or rosette masses than others. There was little evidence to support a correlation between phylogeny and morphology, indicating that differences in olfactory capabilities are the result of functional rather than phylogenetic adaptations. All olfactory epithelia exhibited microvilli and cilia, with microvilli in both nonsensory and sensory areas, and cilia only in sensory areas. Cilia over the sensory epithelia originated from supporting cells. In contrast to teleosts, which possess ciliated and microvillous olfactory receptor types, no ciliated olfactory receptor cells were observed. This is the first comprehensive study comparing olfactory morphology to several aspects of elasmobranch ecology in a phylogenetic context. J. Morphol., 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

9.
The postnatal development of the main olfactory bulb of the rat   总被引:1,自引:0,他引:1  
The postnatal development from birth to 1 year of the main olfactory bulb was examined quantitatively. The volume of the main olfactory bulb increased over seven-fold by day 30 and remained unchanged thereafter. During the same period the volume of the granular layer increased 18-fold and the mean areas of the olfactory glomeruli increased seven-fold. The mean areas of mitral cell perikarya doubled between the neonatal and juvenile periods. The total number of the mitral cells, however, declined during the first three postnatal weeks. In the internal granular layer of the main olfactory bulb, 89% of the granule cells were acquired postnatally. Much of the cellular gain occurred during the first 3 weeks, with the period of maximum acquisition between days 8 and 14. The number of subependymal cells, the precursors of granule cells, reached a peak at 12 days and gradually declined. But some primitive cells could still be found at one year of age and there was an increase in the total number of granule cells beyond day 30. The mean nuber of internal granular layer cells in a single main olfactory bulb of adult rats was about 5 X 10(6); the number of mitral cells about 4 X 10(4). In the animals injected with 3H-thymidine on day 20 and killed 2 h after injection a small but significant proportion of cells was labelled in the subependymal layer but few in the internal granular layer. In the animals killed 20 and 40 days after injection there was a 10--11-fold rise in the proportion of labelled internal granular layer cells. The proportion of labelled internal granular layer cells decreased in longer survival groups but the total number of labelled cells remained the same, even in year-old animals. However, the total number of internal granular layer cells in the sections examined increased with age.  相似文献   

10.
Stereotypical connections between olfactory sensory neuron axons and mitral cell dendrites in the olfactory bulb establish the first synaptic relay for olfactory perception. While mechanisms of olfactory sensory axon targeting are reported, molecular regulation of mitral cell dendritic growth and refinement are unclear. During embryonic development, mitral cell dendritic distribution overlaps with olfactory sensory axon terminals in the olfactory bulb. In this study, we investigate whether olfactory sensory neurons in the olfactory epithelium influence mitral cell dendritic outgrowth in vitro. We report a soluble trophic activity in the olfactory epithelium conditioned medium which promotes mitral/tufted cell neurite outgrowth. While the trophic activity is present in both embryonic and postnatal olfactory epithelia, only embryonic but not postnatal mitral/tufted cells respond to this activity. We show that BMP2, 5 and 7 promote mitral/tufted cells neurite outgrowth. However, the BMP antagonist, Noggin, fails to neutralize the olfactory epithelium derived neurite growth promoting activity. We provide evidence that olfactory epithelium derived activity is a protein factor with molecular weight between 50–100 kD. We also observed that Follistatin can effectively neutralize the olfactory epithelium derived activity, suggesting that TGF-beta family proteins are involved to promote mitral/tufted dendritic elaboration.  相似文献   

11.

Introduction

In vivo, most neurons in the main olfactory bulb exhibit robust spontaneous activity. This paper tests the hypothesis that spontaneous activity in olfactory receptor neurons drives much of the spontaneous activity in mitral and tufted cells via excitatory synapses.

Methods

Single units were recorded in vivo from the main olfactory bulb of a rat before, during, and after application of lidocaine to the olfactory nerve. The effect of lidocaine on the conduction of action potentials from the olfactory epithelium to the olfactory bulb was assessed by electrically stimulating the olfactory nerve rostral to the application site and monitoring the field potential evoked in the bulb.

Results

Lidocaine caused a significant decrease in the amplitude of the olfactory nerve evoked field potential that was recorded in the olfactory bulb. By contrast, the lidocaine block did not significantly alter the spontaneous activity of single units in the bulb, nor did it alter the field potential evoked by electrical stimulation of the lateral olfactory tract. Lidocaine block also did not change the temporal patters of action potential or their synchronization with respiration.

Conclusions

Spontaneous activity in neurons of the main olfactory bulb is not driven mainly by activity in olfactory receptor neurons despite the extensive convergence onto mitral and tufted cells. These results suggest that spontaneous activity of mitral and tufted is either an inherent property of these cells or is driven by centrifugal inputs to the bulb.  相似文献   

12.
Anatomical differences characterizing mitral cells and ruffed cells were published by Kosaka and Hama in three teleost species. Physiological responses from both different types of relay neurons were recorded extracellularly and simultaneously in the plexiform layer using a single tungsten microelectrode. During interstimulus intervals mitral cells responded with higher, frequently burst-like impulse rates triggered by the activity of epithelial receptor neurons. The mitral cell activity could be totally suppressed during local anesthesia of the olfactory epithelium. Ruffed cell impulse rates were low, and each action potential triggered a long-lasting (3-5 ms), continuously variable, summed up granule cell potential. In contrast to mitral cells, blockade of epithelial receptor cells significantly increased the activity of ruffed cells. I.e., the ruffed cells, which have no input from the olfactory epithelium, are spontaneously active, and are laterally inhibited by granule cells activated by mitral cells. During olfactory stimulation contrasting interactions between mitral cells and ruffed cells resulting in a drastic intensification of centrally transmitted information, frequently were recorded. An excitation of mitral cells activity via granule cells laterally inhibited the ruffed cells activity, and an inhibition of mitral cells activity simultaneously "released" an excitation of ruffed cells. This is the first physiological determination of different types of relay neurons in the olfactory bulb of fish.  相似文献   

13.
Voronkov GS  Izotov VA 《Biofizika》2001,46(4):696-703
A computer model of the olfactory bulb was constructed. The paper describes: 1) the general architecture of a model neuron network that reflects the neurophysiological experimental and theoretical data on the structural and functional organization of the peripheral part of the olfactory system, the olfactory bulb with inputs from olfactory receptor neurons; 2) the organization of each of three levels of the model: receptors, olfactory glomeruli, and basic neurons; and 3) a scenario of the computer model work. In some aspects, in particular, in the principle of information presentation, the treatment of the role of basic neurons (mitral and tufted cells), and their interrelations in modules, the model favorably differs from the available olfactory bulb models. The model is basic and provides further refinement of the architecture, an increase in the number of modules, and the modeling of the learning process.  相似文献   

14.
The experimental model for studying the convergence of the heterotype olfactory receptors on the single secondary neuron of the olfactory bulb is proposed. The secondary neuron with bilateral connections (with both olfactory epithelia) in the animals with fused olfactory bulb may serve such a model. The intracellular recording from these secondary neurons of the fused frog's bulb have revealed the secondary neurons which were activated by a certain odorant stimulation of only the one olfactory epithelium, the same odorant stimulation of the other epithelium did not activate (or inhibit) the neurons. The data obtained show that the inputs on the secondary neurons are heterotype, i. e. show the heterogeneous convergence of sensory information on the secondary neurons.  相似文献   

15.
Development of olfactory receptor neuron populations was studied using the previously described monoclonal antibody (Mab) 2B8 which binds to cell surface glycoproteins of presumptive olfactory receptor neurons. In order to definitively demonstrate that the cells recognized were olfactory receptor neurons and to better characterize these cells during development, a well-established receptor cell marker, olfactory marker protein (OMP), was studied at the same time as the 2B8 antigens in double-label immunofluorescence analyses of olfactory structures in rats from Day 13 of gestation (E13) to the early postnatal period. Olfactory epithelium cryostat sections of E13 rats showed binding of the 2B8 Mab to bipolar cells in caudal regions of the nasal cavity. The 2B8 Mab also recognized a large number of cells in the vomeronasal organ (VNO) at this stage. No specific binding of anti-OMP was seen until E15. At this time approximately half of the 2B8 reactive cells also expressed OMP. By birth, greater than 90% of the 2B8 reactive cells expressed OMP. The percentage of total fluorescent labeled cells which are double labeled remained relatively constant at 23-33% as the total number of cells increased between E15 and 2 days postnatal. 2B8 immunoreactivity can be found in the olfactory nerve layer of the olfactory bulb and the presumptive accessory olfactory bulb at E15. In double-label experiments the 2B8 Mab did not bind to all anti-OMP-labeled glomeruli of postnatal to adult rats. In summary, the 2B8 Mab recognizes cells early during development and appears to recognize a subclass of olfactory receptor cells and their axon terminals. Developmental changes in the electrophoretic profile of the olfactory 2B8 antigens were also studied. In the olfactory epithelium a single band at Mr of 200,000 was seen at E19. After birth three bands at 220,000, 180,000 and 110,000 were observed but in adults only two bands of Mr 215,000 and 163,000 were detected. During olfactory bulb development the Mr of the two major 2B8 reactive bands did not change but remained the same as the two major bands seen in the adult olfactory epithelium. The olfactory bulb band at Mr of 215,000 showed a 3 to 4-fold increase and the band at 163,000 showed a 10-fold increase in specific activity from birth to adulthood.  相似文献   

16.
H Shinohara  K Kato  T Asano 《Acta anatomica》1992,144(2):167-171
The immunohistochemical localization of proteins Gi1 (plus Gi3). Gi2 and Go was studied in the olfactory epithelium and the main olfactory bulb of rats, using purified antibodies to the respective alpha subunits and beta gamma subunits of these G proteins. In the olfactory epithelium, only a restricted population of olfactory cells was immunopositive for Gi2 alpha, but others were not. The immunoreactivity for Gi1 alpha/Gi3 alpha was not observed. The olfactory epithelium was immunopositive for both Go alpha and beta gamma, but its apical surface was immunopositive only for beta gamma. In the main olfactory bulb, all layers were intensely immunopositive for Go alpha and beta gamma but weakly for Gi2 alpha. In contrast to the negative or weak immunostainings in the olfactory nerve fiber layer and glomeruli, the molecular and the internal granular layers were intensely immunopositive for Gi1 alpha/Gi3 alpha. These findings suggest the functional difference among Gi1/Gi3, Gi2 and Go in the signal transduction in the olfactory system.  相似文献   

17.
It has recently been shown that adenosine-5'-triphosphate (ATP) is released together with glutamate from sensory axons in the olfactory bulb, where it stimulates calcium signaling in glial cells, while responses in identified neurons to ATP have not been recorded in the olfactory bulb yet. We used photolysis of caged ATP to elicit a rapid rise in ATP and measured whole-cell current responses in mitral cells, the output neurons of the olfactory bulb, in acute mouse brain slices. Wide-field photolysis of caged ATP evoked an increase in synaptic inputs in mitral cells, indicating an ATP-dependent increase in network activity. The increase in synaptic activity was accompanied by calcium transients in the dendritic tuft of the mitral cell, as measured by confocal calcium imaging. The stimulating effect of ATP on the network activity could be mimicked by photo release of caged adenosine 5'-diphosphate, and was inhibited by the P2Y(1) receptor antagonist MRS 2179. Local photolysis of caged ATP in the glomerulus innervated by the dendritic tuft of the recorded mitral cell elicited currents similar to those evoked by wide-field illumination. The results indicate that activation of P2Y(1) receptors in the glomerulus can stimulate network activity in the olfactory bulb.  相似文献   

18.
In mammals, odorants induce various behavioral responses that are critical to the survival of the individual and species. Binding signals of odorants to odorant receptors (ORs) expressed in the olfactory epithelia are converted to an odor map, a pattern of activated glomeruli, in the olfactory bulb (OB). This topographic map is used to identify odorants for memory-based learned decisions. In the embryo, a coarse olfactory map is generated in the OB by a combination of dorsal-ventral and anterior-posterior targeting of olfactory sensory neurons (OSNs), using specific sets of axon-guidance molecules. During the process of OSN projection, odor signals are sorted into distinct odor qualities in separate functional domains in the OB. Odor information is then conveyed by the projection neurons, mitral/tufted cells, to various regions in the olfactory cortex, particularly to the amygdala for innate olfactory decisions. Although the basic architecture of hard-wired circuits is generated by a genetic program, innate olfactory responses are modified by neonatal odor experience in an activity-dependent manner. Stimulus-driven OR activity promotes post-synaptic events and dendrite selection in the responding glomeruli making them larger. As a result, enhanced odor inputs in neonates establish imprinted olfactory memory that induces attractive responses in adults, even when the odor quality is innately aversive. In this paper, I will provide an overview of the recent progress made in the olfactory circuit formation in mice.  相似文献   

19.
Unilateral naris closure in young rodents leads to striking alterations in the development of the ipsilateral olfactory system. One of the most pronounced effects is a 25% reduction in the size of the experimental olfactory bulb, a change that stems in part from decreased cell survival. Since naris occlusion in rodents alters the system more during development than in adulthood, we investigated the consequences of olfactory deprivation in a species that is born in a very immature state, Monodelphis domestica. In this pouchless marsupial, offspring are born after a short 14-day gestation. In the present study, the thymidine analogue bromodeoxyuridine was used to examine early postnatal neurogenesis in the olfactory bulb. Unlike rats and mice, neurogenesis of the main output neurons (the mitral cells) continues into postnatal life. Unilateral naris closure was begun on postnatal day 4 (P4) or P5 in Monodelphis and continued for 30 or 60 days. Laminar volume measurements revealed a significant reduction in the size of the experimental bulb following 60, but not 30, days of early olfactory deprivation. Mitral cell number estimates indicated a significant reduction after both 30 and 60 days of naris closure. The immaturity of Monodelphis offspring may render the population of mitral cells susceptible to the effects of olfactory deprivation. These findings suggest that afferent activity plays a role in the survival of all bulb neurons, irrespective of cell class. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 429–438, 1997  相似文献   

20.
In this study we use a taxon-based approach to examine previous, as well as new findings on several topics pertaining to the peripheral olfactory components in teleost fishes. These topics comprise (1) the gross anatomy of the peripheral olfactory organ, including olfactory sensory neuron subtypes and their functional parameters, (2) the ultrastructure of the olfactory epithelium, and (3) recent findings regarding the development of the nasal cavity and the olfactory epithelium. The teleosts are living ray-finned fish, and include descendants of early-diverging orders (e.g., salmon), specialized descendants (e.g., goldfish and zebrafish), as well as the Acanthopterygii, numerous species with sharp bony rays, including perch, stickleback, bass and tuna. Our survey reveals that the olfactory epithelium lines a multi-lamellar olfactory rosette in many teleosts. In Acanthopterygii, there are also examples of flat, single, double or triple folded olfactory epithelia. Diverse species ventilate the olfactory chamber with a single accessory nasal sac, whereas the presence of two sacs is confined to species within the Acanthopterygii. Recent studies in salmonids and cyprinids have shown that both ciliated olfactory sensory neurons (OSNs) and microvillous OSNs respond to amino acid odorants. Bile acids stimulate ciliated OSNs, and nucleotides activate microvillous OSNs. G-protein coupled odorant receptor molecules (OR-, V1R-, and V2R-types) have been identified in several teleost species. Ciliated OSNs express the G-protein subunit Gαolf/s, which activates cyclic AMP during transduction. Localization of G protein subunits Gα0 and Gαq/11 to microvillous or crypt OSNs, varies among different species. All teleost species appear to have microvillous and ciliated OSNs. The recently discovered crypt OSN is likewise found broadly. There is surprising diversity during ontogeny. In some species, OSNs and supporting cells derive from placodal cells; in others, supporting cells develop from epithelial (skin) cells. In some, epithelial cells covering the developing olfactory epithelium degenerate, in others, these retract. Likewise, there are different mechanisms for nostril formation. We conclude that there is considerable diversity in gross anatomy and development of the peripheral olfactory organ in teleosts, yet conservation of olfactory sensory neuron morphology. There is not sufficient information to draw conclusions regarding the diversity of teleost olfactory receptors or transduction cascades.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号