首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
The mode of action and substrate specificity of a cellulase purified from Aspergillus niger were examined. The enzyme showed little capacity to hydrolyse highly ordered cellulose, but readily attacked soluble cellulose derivatives and amorphous alkali-swollen cellulose. Activity towards barley glucan and lichenin was greater than with CM-cellulose. Low activity was detected with CM-pachyman (a substituted beta-1,3-glucose polymer) and xylan. Activity towards yeast glucan, mannan, ethlene glycol chitin, glycol chitosan, laminarin, polygalacturonic acid and pectin could not be demonstrated. Cellobiose and p-nitrophenyl beta-D-glucoside were not hydrolysed, whereas the rate of hydrolysis of the higher members of the reduced cellulodextrins increased with chain length. The central bonds of cellotetraosylsorbitol and cellopentaosylsorbitol were the preferred points of clevage. Kinetic data indicated that the specificity region of the cellulase is five glucose units in length. The evidence indicates that the cellulase is an endoglucanase.  相似文献   

2.
The PAT2 transporter has been shown to act as an electrogenic proton/amino acid symporter. The PAT2 cDNA has been cloned from various human, mouse and rat tissues and belongs to a group of four genes (pat1 to pat4) with PAT3 and PAT4 still resembling orphan transporters. The first immunolocalization studies demonstrated that the PAT2 protein is found in the murine central nervous system in neuronal cells with a proposed role in the intra and/or intercellular amino acid transport. Here we provide a detailed analysis of the transport mode and substrate specificity of the murine PAT2 transporter after expression in Xenopus laevis oocytes, by electrophysiological techniques and flux studies. The structural requirements to the PAT2 substrates - when considering both low and high affinity type substrates - are similar to those reported for the PAT1 protein with the essential features of a free carboxy group and a small side chain. For high affinity binding, however, PAT2 requires the amino group to be located in an alpha-position, tolerates only one methyl function attached to the amino group and is highly selective for the L-enantiomers. Electrophysiological analysis revealed pronounced effects of membrane potential on proton binding affinity, but substrate affinities and maximal transport currents only modestly respond to changes in membrane voltage. Whereas substrate affinity is dependent on extracellular pH, proton binding affinity to PAT2 is substrate-independent, favouring a sequential binding of proton followed by substrate. Maximal transport currents are substrate-dependent which suggests that the translocation of the loaded carrier to the internal side is the rate-limiting step.  相似文献   

3.
Human α-l-fucosidase is a soluble lysosomal enzyme which hydrolyzes α-l-fucose residues linked to the 2 position of galactose or the 3, 4, or 6 position ofN-acetylglucosamine. Demonstration of activity towards natural oligosaccharide or glycosphingolipid substrates was achieved by measuring liberated l-fucose by coupling to fucose dehydrogenase and NAD and measuring NADH production spectrophotometrically. Activity of purified human spleen, brain, and cultured skin fibroblast or crude cell extracts towards 4-methylumbelliferyl-α-l-fucoside had a pH optimum of 4.5 to 5.5 and was unaffected by the presence of neutral detergents such as Triton X-100. However, the addition of sodium taurocholate or other bile salts to the incubation mixture caused a marked inhibition at pH 5 and a shift in pH optimum to the pH 6–7 region. Sodium taurocholate effected a threefold reduction in the apparent Km for α-l-fucosidase at pH 6.0, but studies on fucosidosis tissue (α-fucosidase deficiency) or subcellular fractions derived from rat liver failed to indicate the existence of a membrane-bound α-l-fucosidase. The response of other lysosomal hydrolases to the presence of bile salts was investigated and was found to be variable, perhaps depending upon the hydrophilic or hydrophobic nature of the natural substrate and/or the state of association of the active enzyme.  相似文献   

4.
Ascorbate oxidase oxidizes leuco 2, 6-dichloroindophenol to the blue quinoid dye and produces spectral changes in the UV spectra of certain substituted polyhydric and amino phenols at pH 5.7. The new peaks produced by the addition of enzyme to the dichlorohydroquinones (2,5 and 2,6) and hydroxyhydroquinone correspond to the respective p-quinones of these substrates. At pH 5.7, the enzyme does not oxidize hydroquinone, barely oxidizes chlorohydroquinone, but oxidizes 2,6- and 2,5-dichlorohydroquinone and hydroxyhydroquinone at a rate about 112 that of ascorbic acid, with the uptake of one gram atom of oxygen per mole of substrate. A correlation has been found between the concentration of anion present in solution at pH 5.7 and the rate of oxidation of compounds of the hydroquinone series by the enzyme. The results indicate that an anionic form of the substrate is an important requirement of the enzyme specificity.  相似文献   

5.
Substrate specificity of purified tadpole collagenase (EC 3.4.24.3) has been studied using eleven synthetic peptides. A pentapeptide, t-butyloxycarbonylprolylalanylglycylisoleucylalanine amide, was susceptible to the action of the enzyme and an octapeptide, acetylprolylglutaminylglycylisoleucylalanylglycylglutaminylarginine ethyl ester, was proposed to be the best substrate for vertebrate collagenase among the peptides tested.  相似文献   

6.
The alkaline zinc-metallo nuclease of Physarum polycephalum is an endonuclease with a high specificity for single-stranded nucleic acids. Single-stranded DNA was cleaved at least 6,000 times faster than double-stranded DNA under identical conditions. In the supercoil-induced single-stranded region of Form I PM2 DNA only a single nick was made. The nuclease showed nucleotide specificity. Poly(A), poly(I), and poly(dT) were preferentially hydrolyzed. Product analysis showed that it acted by an endonucleolytic mechanism: long polynucleotides were fragmented via intermediate length products to oligo- and mono-nucleotides with the phosphate group at the 5'-terminal position. Extensive similarities exist with the single-strand-specific nuclease S1 from Aspergillus. The zinc-metallo endonuclease from Physarum could be used as a similar probe for single-stranded nucleic acids at neutral or alkaline pH conditions.  相似文献   

7.
Among glycoside hydrolases, beta-glucosidase plays a unique role in many physiological and biocatalytical processes that involve the beta-linked O-glycosyl bond of various oligomeric saccharides or glycosides. Structurally, the enzyme can be grouped into glycoside hydrolase family 1 and 3. Although the basic ("retaining, double-displacement") mechanism for the catalysis of family 3 beta-glucosidase has been established, in-depth understanding of its structure-function relationship, particularly the substrate specificity that is of great interest for developing the enzyme as a versatile biocatalyst, remains limited. To further probe the active site, we carried out a comparative study on a family 3 beta-glucosidase from Aspergillus oryzae with substrates and competitive inhibitors of different structures, in attempt to evaluate the site-specific spatial and chemical interactions between a pyranosyl substrate and the enzyme. Our results showed the enzyme having a strict stereochemical requirement (to accommodate beta-d-glucopyranose) for its "-1" active subsite, in contrast to its family 1 counterpart.  相似文献   

8.
Substrate and steric specificity of hydropyrimidine hydrase.   总被引:7,自引:0,他引:7  
F Cecere  G Galli  F Morisi 《FEBS letters》1975,57(2):192-194
  相似文献   

9.
10.
11.
The substrate specificity of carboxypeptidase (F-II) purified from watermelon for various synthetic peptides and esters was examined kinetically. The enzyme showed a broad substrate specificity against various carbobenzoxy- and benzyl-dipeptides. Peptides containing glycine or proline were hydrolyzed slowly by the enzyme. Peptides containing hydrophobic amino acids were hydrolyzed rapidly. The presence of hydrophobic amino acid residues, not only at the C-terminal position but also at the second position and probably the third position from the C-terminal resulted in an increase in the rate of hydrolysis. Inhibition studies with diisopropyl flurophosphate and diastereomers of carbobenzoxy-Phe-Ala demonstrated that the peptidase and esterase activities of the enzyme are both catalyzed by the same site of the enzyme molecule, but the binding sites for peptides and esters seem not to be the same. The enzyme also had amidase activity, which was optimal at pH 7.0.  相似文献   

12.
For Escherichia coli Bos12 (O16:K92:H-), a bacteriophage (phi 92) has been isolated which carries a depolymerase active on the K92 capsular polysaccharide. As seen under the electron microscope, phi 92 belongs to Bradley's morphology group A and is different from the phage phi 1.2 previously described (Kwiatkowski et al., J. Virol. 43:697-704, 1982), which grows on E. coli K235 (O1:K1:H-), depolymerizes colominic acid, and belongs to morphology group C. The specificity of the phi 1.2- and phi 92-associated endo-N-acetylneuraminidases has been studied with respect to the following substrates (all alkali treated, and where NeuNAc represents N-acetylneuraminic acid): (i) [-alpha-NeuNAc-(2 leads to 8)-]n (colominic acid), (ii) [-alpha-NeuNAc-(2 leads to 8)-alpha-NeuNAc-(2 leads to 9)-]n (E. coli K92 polysaccharide), and (iii) [-alpha-NeuNAc-(2 leads to 9)-]n (Neisseria meningitidis type C capsular polysaccharide). The increase in periodate consumption of these glycans upon incubation with purified phi 1.2 or phi 92 particles was measured, and the split products obtained from all substrates after exhaustive degradation were analyzed by gel chromatography. It was found that the Neisseria polysaccharide is not appreciably affected by either virus enzyme and that phi 1.2 only depolymerizes a small fraction of the K92 glycan. Colominic acid, however, is completely degraded by both agents, phi 92 yielding smaller fragments (one to six NeuNAc residues) than phi 1.2 (two to seven). Phage phi 92 additionally depolymerizes the K92 glycan, essentially to oligosaccharides of two, four, and six residues. The size distribution of these K92 oligosaccharides indicates that the phi 92 enzyme predominantly cleaves the alpha(2 leads to 8) linkages in this polymer.  相似文献   

13.
Substrate specificity of Ty1 integrase.   总被引:6,自引:2,他引:4       下载免费PDF全文
Integration of the Saccharomyces cerevisiae retrotransposon Ty1 requires the element-encoded integrase (IN) protein, which is a component of cytoplasmic virus-like particles (VLPs). Using purified recombinant Ty1 IN and an oligonucleotide integration assay based on Ty1 long terminal repeat sequences, we have compared IN activity on substrates having either wild-type or altered donor ends. IN showed a marked preference for blunt-end substrates terminating in an A:T pair over substrates ending in a G:C pair or a 3' dideoxyadenosine. VLP activity on representative substrates also showed preference for donor strands which have an adenosine terminus. Staggered-end substrates showed little activity when nucleotides were removed from the end of the wild-type donor strand, but removal of one nucleotide from the complementary strand did not significantly diminish activity. Removal of additional nucleotides from the complementary strand reduced activity to minimal detection levels. These results suggest that the sequence specificity of Ty1 IN is not stringent in vitro. The absence of Ty1 IN-mediated 3' dinucleotide cleavage, a characteristic of retroviral integrases, was demonstrated by using selected substrates. In addition to the forward reaction, both recombinant IN and VLP-associated IN carry out the reverse disintegration reaction with long terminal repeat-based dumbbell substrates. Disintegration activity exhibits sequence preferences similar to those observed for the forward reaction.  相似文献   

14.
In this study, the substrate specificity of a newly identified rat brain ceramidase (CDase) was investigated. To this end, the major functional groups and stereochemistry of ceramide (Cer) were evaluated for their influence on the hydrolysis of substrate by this CDase. The results showed that, of the four possible stereoisomers of Cer, only the natural d-e-C(18)-Cer isomer was used as substrate (K(m) of 1.1 mol% and V(max) of 5 micromol/min/mg). Removal of the 4-5 trans double bond to generate dihydroceramide decreased the affinity of the enzyme toward its substrate by around 90%, whereas changing the configuration of the double bond from the natural trans configuration into cis or introduction of a hydroxyl group (phytoceramide) resulted in loss of hydrolysis. Shortening the chain length of the sphingosine backbone resulted in decreased affinity. Methylation of either the primary or the secondary hydroxyl groups resulted in loss of activity. Results also indicated that Cer species that harbor long saturated or monounsaturated fatty acyl chains are preferred substrates of the enzyme. alpha-Hydroxylated Cer demonstrated considerably higher affinity, indicating a preference of the enzyme to those Cer molecular species. These results disclose a very high specificity of nonlysosomal CDase for its substrate, Cer.  相似文献   

15.
W Gibb 《Steroids》1981,37(1):23-31
Recent kinetic studies on the placental microsomal 3 beta-hydroxysteroid dehydrogenase have shown that apparent Km values for 3 beta-hydroxy-5-androsten-17-one (dehydroepiandrosterone) and 3 beta-hydroxy-5-pregnen-20-one (pregnenolone) are 15nM and 40nM respectively, which are orders of magnitude lower than found in earlier studies. The purpose of this study was to investigate the substrate and nucleotide specificity of the 3 beta-hydroxysteroid dehydrogenase, and the ability of various steroids to inhibit the reaction at these lower steroid concentrations. Each steroid inhibited the metabolism of the other competitively, and the Ki values obtained were not significantly different from their respective Km values. The ability of various steroids to inhibit the reaction at concentrations of 100nM was usually less than that found at micromolar concentrations. However, certain steroids showed marked inhibition. For example, estrone and estradiol-17 beta inhibit the oxidation of both substrates competitively with Ki values of between 15 and 24nM. The Km values of dehydroepiandrosterone and pregnenolone with NADP+ as cofactor are higher than those with NAD+ as cofactor and the V values are much lower. These data indicate that in human placental microsomes a single 3 beta-hydroxysteroid dehydrogenase, essentially NAD+ specific, metabolizes dehydroepiandrosterone and pregnenolone.  相似文献   

16.
17.
18.
19.
The malarial parasite relies on de novo pyrimidine biosynthesis to maintain its pyrimidine pools, and unlike the human host cell it is unable to scavenge preformed pyrimidines. Dihydroorotate dehydrogenase (DHODH) catalyzes the oxidation of dihydroorotate (DHO) to produce orotate, a key step in pyrimidine biosynthesis. The enzyme is located in the outer membrane of the mitochondria of the malarial parasite. To characterize the biochemical properties of the malarial enzyme, an N-terminally truncated version of P. falciparum DHODH has been expressed as a soluble, active enzyme in E. coli. The recombinant enzyme binds 0.9 molar equivalents of the cofactor FMN and it has a pH maximum of 8.0 (k(cat) 8 s(-1), K(m)(app) DHO (40-80 microm)). The substrate specificity of the ubiquinone cofactor (CoQ(n)) that is required for the oxidation of FMN in the second step of the reaction was also determined. The isoprenoid (n) length of CoQ(n) was a determinant of reaction efficiency; CoQ(4), CoQ(6) and decylubiquinone (CoQ(D)) were efficiently utilized in the reaction, however cofactors lacking an isoprenoid tail (CoQ(0) and vitamin K(3)) showed decreased catalytic efficiency resulting from a 4 to 7-fold increase in K(m)(app). Five potent inhibitors of mammalian DHODH, Redoxal, dichloroallyl lawsone (DCL), and three analogs of A77 1726 were tested as inhibitors of the malarial enzyme. All five compounds were poor inhibitors of the malarial enzyme, with IC(50)'s ranging from 0.1-1.0 mm. The IC(50) values for inhibition of the malarial enzyme are 10(2)-10(4)-fold higher than the values reported for the mammalian enzyme, demonstrating that inhibitor binding to DHODH is species specific. These studies provide direct evidence that the malarial DHODH active site is different from the host enzyme, and that it is an attractive target for the development of new anti-malarial agents.  相似文献   

20.
1) Analogues of 3-hydroxy-3-methylglutaryl-CoA were prepared in which the substituents at C-3 of the acyl residue were altered. The same analogues were additionally modified by replacement of the thioester oxygen by hydrogen to yield reduction-resistant CoA-thioethers. The interaction of both types of CoA derivatives with a 58-kDa catalytic fragment of human 3-hydroxy-3-methylglutaryl-CoA reductase was studied. 2) This enzyme reduces glutaryl-CoA at a very low rate whereas 3-hydroxyglutaryl-CoA is well reduced, the maximal rate of reduction being 7% that of the physiological substrate. Only half of total 3-hydroxyglutaryl-CoA was attacked, thus reflecting the stereo-specificity of the enzyme for (3S)-3-hydroxy-3-methylglutaryl-CoA. The results invalidate the hitherto assumed absolute substrate specificity of the enzyme. 3) The affinity of both 3-hydroxyglutaryl-CoA and its thioether variant S-(4-carboxy-3-hydroxybutyl)CoA to the reductase, Ki = 0.3 microM and Ki = 0.4 microM, respectively, is higher than that of the physiological substrate, Km = 1.5 microM (data related to (S)-diastereomer). The results show for the first time that the methyl-group effect observed with the inhibitor lovastatin is an intrinsic property of the enzyme. 4) All of the prepared CoA derivatives are purely competitive inhibitors of the reductase, the affinities varying within a range of two powers of ten (Ki = 0.3-32 microM). On variation of the substituents at C-3 of the acyl residue of the physiological substrate the affinity of both CoA-thioesters and CoA-thioethers increases in the sequence CH2, C(CH3)2, CH(CH3), C(OH)CH3, CH(OH).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号