首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract The lactate dehydrogenase gene, ldh , of Alcaligenes eutrophus H16 was identified on a 14-kbp Eco RI restriction fragment of a genomic library in the cosmid pHC79 by hybridization with a 50-mer synthetic oligonucleotide which was derived from the N-terminal amino acid sequence of the purified enzyme. Recombinant strains of Escherichia coli JM83, which harboured a 2.0-kbp Pst I subfragment in pUC9-1, expressed LDH at a high level, if ldh was downstream from and colinear to the E. coli lac promoter. The nucleotide sequence of a region of 4245 bp revealed several open reading frames which might represent coding regions. One represented the ldh gene. The amino acid sequence deduced from ldh exhibited 29% and 36% identity to the L-malate dehydrogenase of Methanothermus fervidus and to the putative translation product of an E. coli sequence of unknown function, respectively. The ldh was separated by short intergenic regions from two other open reading frames: ORF5 was located downstream of and colinear to ldh , and its putative translational product revealed 38 to 56% amino acid identity to penicillin-binding proteins. ORF3 was located upstream of and colinear to ldh , and its putative gene translational product represented a hydrophobic protein. A sequence, which resembled the A. eutrophus alcohol dehydrogenase promoter, was detected upstream of ORF3, which most probably represents the first transcribed gene of an operon consisting of ORF3, ldh and ORF5.  相似文献   

2.
A chimeric bifunctional enzyme composing of galactose dehydrogenase (galDH; from Pseudomonas fluorescens) and lactate dehydrogenase (LDH; from Bacillus stearothermophilus) was successfully constructed. The chimeric galDH/LDH possessed dual characteristics of both galactose dehydrogenase and lactate dehydrogenase activities while exhibiting hexameric rearrangement with a molecular weight of approximately 400 kDa. In vitro observations showed that the chimeric enzyme was able to recycle NAD with a continuous production of lactate without any externally added NADH. Two fold higher recycling rate (0.3 mM/h) than that of the native enzyme was observed at pH values above 8.5. Proximity effects became especially pronounced during the recycling assay when diffusion hindrance was induced by polyethylene glycol. All these findings open up a high feasibility to apply the NAD(H) recycling system for metabolic engineering purposes e.g. as a model to gain a better understanding on the molecular proximity process and as the routes for synthesizing of numerous high-value-added compounds.  相似文献   

3.
4.
The influence of phosphorylation on the properties of lactate dehydrogenase (LDH) has been studied. Data obtained using the immobilization approach support the assumption that the autophosphorylation of LDH discovered previously in the presence of ATP has no relation to protein kinase activity of the enzyme. Phosphorylation of native LDH by tyrosine kinases was shown to be inefficient. However, the efficiency of the phosphorylation considerably increased after the dissociation of LDH into non-native forms of the enzyme. Ca2+/calmodulin-dependent protein kinase catalyzes incorporation of 0.8-0.9 mole phosphate per mole of LDH tetramer. The phosphorylation results in an increase in activity by 25-30% and increases markedly the stability of the enzyme during cold inactivation. Phosphorylation of LDH by Ca2+/calmodulin-dependent protein kinase, unlike the phosphorylation on tyrosine residues, is supposed to be of importance for the control of cell metabolism.  相似文献   

5.
Alterations in NADH content and NAD-dependent dehydrogenase activity were determined in regenerating epithelium during wound healing in young guinea pigs. Regenerating epithelium exhibited increased levels of NADH. The migratory and proliferative phases of epidermal wound healing were characterized by increases in glycolytic enzyme activities, including an increase in lactate dehydrogenase (LDH). The maturation phase of epidermal wound healing was characterized by a maximal increase in alpha-glycerophosphate dehydrogenase (GOPDH) activity. The contrasting changes in LDH and GOPDH activity suggest that increased levels of NADH are utilized first by LDH in glycolysis during epidermal migration and proliferation and then by GOPDH in triacylglycerol synthesis during epidermal differentiation.  相似文献   

6.
We have cloned an ORF ofBacillus thuringiensis M15, which encodes a protein sharing high similarity with D-glucose dehydrogenase. A high-expression plasmid (pBtGDH) for the ORF was constructed.Escherichia coli JM 109 transformed with pBtGDH exhibited D-glucose dehydrogenase activity, and the enzyme was purified by 3 chromatographic steps to homogeneity with 6.9 fold and a final yield of 13%. The purified enzyme has highly narrow substrate specificity for glucose and 2-deoxy-D-glucose and showed no activity with any other sugars we tested. The properties of the purified enzyme were similar to those of the D-glucose dehydrogenase (BtGDH) that is mainly produced inB. thuringiensis M15. These results show that the cloned gene encodes BtGDH, as we previously reported. This is the first report to determine the sequence of the enzyme with narrow substrate specificity. BtGDH shows 89% sequence similarity with D-glucose dehydrogenase fromBacillus megaterium IWG3 (GDH-IWG3), which has broad substrate specificity. A comparative analysis between BtGDH and GDH-IWG3 will reveal the differences between them and show the narrow specific activity of BtGDH.  相似文献   

7.
The lactate dehydrogenase (LDH) from soya bean has been purified to homogeneity by affinity chromatography. The enzyme was purified by sequential adsor  相似文献   

8.
Microsomes possessing the lactate dehydrogenase (LDH) activity were isolated from white driving muscles of the skate (Raja clavata) using differential centrifugation. It was shown that the increase of the ionic strength after addition of 0.6 M KCl and alkalinization of the medium result in the solubilization of the LDH activity - by 50% and 80%, respectively. The Km values for pyruvate and NADH are 171 microM and 7.5 mM, respectively. Membrane-bound LDH, is not inhibited by pyruvate excess (up to 20 mM); the rate of the enzyme inactivation by trypsin is 3 times as low as that of the solubilized enzyme. The existence of two-membrane-bound LDH pools is postulated. The enzyme from the first pool is bound to the membrane by electrostatic whereas the second pool LDH - by hydrophobic forces.  相似文献   

9.
R-2-hydroxy-4-phenylbutyric acid (R-HPBA) is an important intermediate in the manufacture of angiotensin converting enzyme inhibitors. In this work, a recombinant D-lactate dehydrogenase (LDH) was used to transform 2-oxo-4-phenylbutyric acid (OPBA) to R-HPBA, with concomitant oxidation of beta-nicotinamide adenine dinucleotide (NADH) to NAD(+). The cofactor NADH was regenerated by formate dehydrogenase (FDH) present in whole cells of Candida boidinii, which were pre-treated with toluene to make them permeable. The whole cells used in the process were more stable and easier to prepare as compared with the isolated FDH from the cells. Kinetic study showed that the reaction rate was dependent on the concentration of cofactor, NAD(+), and that both R-HPBA and OPBA inhibited the reaction. A novel method for co-immobilization of whole cells and LDH enzyme on cotton cloth was developed using polyethyleneimine (PEI), which induced the formation of PEI-enzyme-cell aggregates and their adsorption onto cotton cloth, leading to multilayer co-immobilization of cells and enzyme with high loading (0.5 g cell and 8 mg LDH per gram of cotton cloth) and activity yield ( > 95%). A fibrous bed bioreactor with co-immobilized cells and enzyme on the cotton cloth was then evaluated for R-HPBA production in fed-batch and repeated batch modes, which gave relatively stable reactor productivity of 9 g/L . h and product yield of 0.95 mol/mol OPBA when the concentrations of OPBA and R-HPBA were less than 10 g/L.  相似文献   

10.
Lactate dehydrogenase (LDH) and yeast alcohol dehydrogenase ( YADH ) are inactivated when attacked by hydroxy free radicals (OH). Organic molecules with a high rate constant of reaction with OH such as ascorbate or urate can compete with the enzymes for these strongly oxidising radicals. However, although 10(-3)M ascorbate can substantially protect both LDH and YADH from OH attack, in the presence of 10(-3)M urate only LDH is protected. In the case of YADH an even greater degree of inactivation than with OH occurs. The extent of inactivation is considerably reduced when oxygen is absent, in agreement with a urate peroxy radical perhaps being partly responsible for the increased inactivation of the enzyme.  相似文献   

11.
Forty-seven bovine embryos, ranging from the four-cell to expanded blastocyst stage, with grades ranging from excellent to poor, were collected non-surgically from superovulated Holstein heifers. A viability assay based on the measurement of bioluminescent emission from the media surrounding an embryo was tested. This assay measured the activity of the enzyme lactate dehydrogenase (LDH) released into the media by the embryos. Lactate dehydrogenase has been reported to be released into media by nonviable embryos. The assay used is simple, rapid and nonsubjective, requiring approximately 5 min to complete. The LDH assay proved to be a practical method for distinguishing between nonviable and viable embryos. Viability was determined by the observation of embryo development in culture following the LDH assay. The activity of LDH in the media of nonviable embryos was consistently higher than for viable embryos (P<0.001), with no overlap between the two groups. Thus, the LDH assay was shown to be a reliable test of embryo viability.  相似文献   

12.
The shift of the lactate dehydrogenase (LDH) isoenzymes in experimental animals under hypoxia from B (aerobic) to A (anaerobic) is confirmed and its reversibility after removal of the animals to room air is reported. These experiments are interpreted as further supportive evidence of a physiological adaptive role for the lactate dehydrogenase enzyme system. The slow adaptive process observed in this experimental situation presumably requires de novo enzyme synthesis, however, in the emergency of a sudden deprivation of oxygen the liberation of preformed A LDH could be a link in the rapid chain of events resulting in depressed cardiac muscle contractility which follows myocardial infarction. A recently proposed comprehensive explanation of the role of LDH isozymes is thus extended.  相似文献   

13.
Lactate (LDH) and malate dehydrogenase (MDH) of white skeletal muscle of fishes acclimated to 20, 25 and 30 degrees C and thereafter submitted to hypoxia were studied in different substrate concentrations. Significant differences for LDH and MDH of white muscle enzyme activities are described here for the first time in Rhinelepis strigosa of fishes acclimated to 20 degrees C and submitted to hypoxia for six hours. LDH presented a significant decrease in enzyme affinity for pyruvate in acute hypoxia, for fishes acclimated to 20 degrees C and an increase for fishes acclimated to 30 degrees C.  相似文献   

14.
Selective recovery of lactate dehydrogenase using affinity foam   总被引:3,自引:0,他引:3  
Selective isolation of lactate dehydrogenase (LDH) from porcine muscle extract was studied using foam generated from the vigorous stirring of a non-ionic surfactant, Triton X-114 derivatized with Cibacron blue. The cloud point of the surfactant-dye conjugate was higher than that of the native Triton X-114, and also the foam prepared from the affinity surfactant was more rigid taking a longer time to collapse. The equilibrium dissociation constant between pure LDH and surfactant-dye conjugate was 5.0 microM as compared to the value of 2.2 microM for the enzyme and free dye as measured by differential spectroscopy. The isolation procedure involved mixing of the porcine muscle extract with the affinity foam, separating and collapsing the foam, and warming the solution formed to 37 degrees C to yield the surfactant-dye phase and an aqueous phase containing the enzyme. The effect of surfactant concentration and protein load on enzyme recovery and purification was investigated. Under optimal conditions, LDH was quantitatively recovered with high purification factor in a very short time. Both recovery and purification were higher when foam prepared from an equivalent mixture of surfactant-dye conjugate and unmodified surfactant was used. The selectivity of interaction between LDH and detergent-dye conjugate was confirmed by lowered recovery when NADH was included during the binding step.  相似文献   

15.
Five bands of lactate dehydrogenase (LDH) isoenzymes were seen by polyacrylamide gel electrophoresis in gastrocnemius muscle of the turtle (Kachuga smithi). The major band was of M2H2 type and was partially purified by gel filtration and affinity chromatography. The specific activity of the enzyme was 2.6 units/mg protein. The half-life of the enzyme at 4 degrees C, was about 7 days. The optimum temperature for enzyme activity was 30 degrees C and the enzyme was irreversibly inactivated at 40 degrees C. The optimum pH for the forward reaction (pyruvate to lactate) was 5.5, while for reverse reaction it was between 8.0 to 9.5. The apparent Km values for pyruvate, NADH, lactate and NAD+ were 0.20, 0.013, 25 and 0.333 mM, respectively. Oxalate was found to be the inhibitor of LDH with Ki of about 4.2 mM.  相似文献   

16.
Two commercially important enzymes, L-lactate dehydrogenase (LDH) and L-malate dehydrogenase (MDH) were purified simultaneously from bovine heart, on an agarose affinity adsorbent. This adsorbent bears a dye-ligand composed of an anthraquinone chlorotriazine chromophore linked to a biomimetic terminal 4-aminophenyloxanylic acid moiety. The purification protocol exploited the biomimetic affinity adsorbent, in combination with a cross-linked agarose DEAE anion-exchanger. The procedure comprised a preliminary anion-exchange first step, for the separation of the three enzyme activities, mMDH, cMDH and LDH. In the second step, that of affinity chromatography, the unbound mMDH obtained from the first step, was purified by specific elution with NAD+/sulphite (22.5-fold purification, 55% step-yield). The procedure afforded mMDH preparation of specific activity approx. 1,300?u/mg (25?°C) at 45% overall yield, free of cytoplasmic MDH, glutamic-oxaloacetic transaminase (GOT) and fumarase. The LDH activity, which, bound to the anion-exchanger during the first step, was recovered from the adsorbent in 200?mM KCl, and finally purified by biomimetic-dye affinity chromatography (NAD+/sulphite elution) and a second ion-exchange chromatography step (elution with 200?mM KCl). The LDH preparation exhibited specific activity approx. 500?u/mg at 25?°C (content of impurities: pyruvate kinase and GOT were not detected; MDH, 0.01%).  相似文献   

17.
Lactate dehydrogenase C4 (LDH-C4) is a tissue-specific enzyme in the mammalian testis and the only lactate dehydrogenase isozyme of sperm. Inhibitors of LDH activity were used to determine whether this enzyme plays a role in sperm capacitation, the acrosome reaction and/or fertilization. Oxamate or its derivative was used to inhibit sperm LDH activity in a medium promoting capacitation. Complete inhibition of LDH activity blocked capacitation. This effect could be reversed partially by the addition of dbcAMP or pentoxifylline to the culture medium. Western blotting showed that oxamate and N-isopropyl oxamate inhibited the tyrosine phosphorylation of proteins during the sperm capacitation process. Presumably, glycolysis is the primary energy pathway for sperm metabolism. The oxidation of reduced NAD with the conversion of pyruvate to lactate by LDH provides ATP necessary for protein kinase A (PKA) activity. Our data indicate that LDH-C4 plays an important metabolic role in sperm capacitation.  相似文献   

18.
The effect of polymers (proteins, polyaminoacids, polyethylenimine) on kinetic parameters of lactate dehydrogenase (LDH) from porcine skeletal muscle was studied. Activation of the enzyme which was partially due to the association of LDH dimers was observed. A hypothesis was proposed, according to which the contribution of dissociation of oligomeric enzymes in the regulation of their activity in vivo is negligible due to the equilibrium shift towards association in dissociable enzyme systems.  相似文献   

19.
Isozymic patterns of lactate dehydrogenase (E.C. 1.1.1.27) by polyacrylamide gel electrophoresis (PAGE) were observed in various categories of filariasis and controls, i.e. asymptomatic microfilaraemia and symptomatic amicrofilaraemia, endemic normal and non-endemic normal. Lactate dehydrogenase (LDH) activity was also observed amongst the above categories of patients. An increase in enzyme activity and change in the isozymic pattern was observed in the above categories of filaria infected serum. LDH activity doubled in asymptomatic microfilaraemia whereas in symptomatic amicrofilaraemia the increase in LDH activity was thirtyfold. The isozymic pattern of microfilaraemic cases showed the presence of three bands B4, A1B3, A2B2, which are quite thick as compared to normal healthy subjects, whereas the patients with symptomatic amicrofilaraemia showed marked elevation of serum LDH-4 or A3B1. The LDH was partially purified by combined treatment of (NH4)2SO4 fractionation and gel filtration. The isozymic pattern of purified LDH showed a similar pattern.  相似文献   

20.
A flow injection system for the on-line detection of the intracellular enzyme lactate dehydrogenase (LDH) during fermentation has been developed. The system is comprised of an on-line cell disintegration part, an immobilised dye based expanded bed column for the affinity capture of LDH and a fluorimetric detection unit. The system with a linearity of 0.1–5.4 U LDH ml–1 was applied for the detection of intracellular accumulation of LDH during Lactococcus lactis subsp.lactis cultivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号