首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Light Golgi fractions (GF(1+2)) prepared from rat liver homogenates by a modification of the Ehrenreich et al. procedure (J. Cell Biol. 59:45) had significant NADPH-cytochrome P(450) reductase (NADPH-cyt c reductase) activity if assayed immediately after their isolation. An antibody raised in rabbits against purified microsomal and Golgi fractions. To find out whether this activity is located in bona fide Golgi elements or in contaminating microsomal vesicles, we used the following 3-step immunoadsorption procedure: (a) antirabbit IgG (raised in goats) was conjugated to small (2-5 μm) polycrylamide (PA) beads; (b) rabbit anti NADPH-cyt c reductase was immunoadsorbed to the antibody-coated beads; and (c) GF(1+2) was reacted with the beads carrying the two successive layers of antibodies. The beads were then recovered by centrifugation, and were washed, fixed, embedded in agarose, and processed for transmission electromicroscopy. Antireductase- coated beads absorbed 60 percent of the NADPH-cyt c reductase (and comparable fractions of NADH-cyt c reductase and glucose-6-phosphatase) but only 20 percent of the galactosyltransferase activity of the input GF(1+2). Differential vesicle counts showed that approximately 72 percent of the immunoadsorbed vesicles were morphologically recognizable Golgi elements (vesicles with very low density lipoprotein [VLDL] clusters or Golgi cisternae); vesicles with single VLDL and smooth surfaced microsome-like vesicles were too few (approximately 25 percent) to account for the activity. It is concluded that NADPH-cytochrome P(450) reductase is a Golgi membrane enzyme of probably uneven distribution among the elements of the Golgi complex.  相似文献   

2.
Rabbit antisera were prepared against cytochrome b5 and NADPH-cytochrome c reductase [EC 1.6.2.4] purified from rat liver microsomes, and utilized in examining the distribution of these and other membrane-bound enzymes among the vesicles of rat liver microsomal preparations by immunoprecipitation and immunoadsorption methods. Smooth microsomes with an average vesicular size of 200 nm (diameter) and sonicated smooth microsomes with an average diameter of 40-60 nm were used in subfractionation experiments. Immunoprecipitation of microsomal vesicles with anti-cytochrome b5 immunoglobulin failed to show any separation of the microsomes into fractions having different enzyme compositions. Cytochrome b5 was apparently distributed among all vesicles even when sonicated microsomes were used. When the antibody against NADPH-cytochrome c reductase was used, however, immunoadsorption of microsomes on Sepharose-bound antibody produced some separation of NADPH-cytochrome c reductase and cytochrome P-450 from NADH-cytochrome b5 reductase and cytochrome b5. The separation was more pronounced when sonicated microsomes were used. These results indicate microheterogeneity of the microsomal membrane, and suggest the clustering of NADPH-cytochrome c reductase and cytochrome P-450 molecules in the membrane.  相似文献   

3.
Although the preparation of rat liver Golgi apparatus isolated by our method contains appreciable activities of NADH- and NADPH-cytochrome c reductases and glucose-6-phosphatase, these enzymes as well as thiamine pyrophosphatase of the extensively fragmented Golgi fraction are partitioned in aqueous polymer two-phase systems quite differently from those associated with microsomes. Similarly, the partition patterns of acid phosphatase and 5'-nucleotidase of the Golgi fragments differ from those of homogenized lysosomes and plasma membrane, respectively. It is concluded that most, if not all, of these marker enzymes in the Golgi fraction cannot be ascribed to contamination by the non-Golgi organelles. In sucrose density gradient centrifugation the NADH- and NADPH-cytochrome c reductase activities of the Golgi fraction behave identically with galactosyltransferase but differently from the reductase activities of microsomes, again indicating that the reductases are inherently associated with the Golgi apparatus. NADPH-cytochrome c reductase of the Golgi preparation is immunologically identical with that of microsomes. The marker enzymes mentioned above and galactosyltransferase behave differently from one another when the Golgi fragments are subjected to partitioning in aqueous polymer two-phase systems, suggesting that these enzymes are not uniformly distributed in the Golgi apparatus structure.  相似文献   

4.
Abstract— A comprehensive study has been undertaken on the subcellular and subsynaptosomal distribution of a number of markers for subcellular organelles in preparations from rat brain. Although the activity of most enzymatic markers was decreased by freezing and storage at - 70oC, no significant changes were noted in the distribution of these activities. This demonstrates that contamination of brain fractions by subcellular organelles can be accurately assessed after freezing and thawing. A marked discrepancy was noted between the distribution of three putative markers for endoplasmic reticulum. CDP-choline-diacylglycerol cholinephosphotransferase (EC 2.7.8.1) activity was mainly limited to the microsomal fraction and was present to a lesser extent in the synaptosomal fraction than the other putative markers for endoplasmic reticulum. Estrone sulfate sulfohydrolase (EC 3.1.6.2) activity demonstrated a bimodal distribution between the crude nuclear and microsomal fractions. However, considerable activity was associated with the synaptosomal fraction. NADPH-cytochrome c reductase (EC 2.3.1.15) activity sedimented in the microsomal and the synaptosomal fractions. Calculations based on the relative specific activities of the microsomal and synaptic plasma membrane fraction indicated that the contamination of the synaptic plasma membranes by endoplasmic reticulum was 44.5% (NADPH-cytochrome c reductase), 38.0% (estrone sulfatase) and 9.0% (cholinephosphotransferase). Since it is believed that virtually all of the synthesis of phosphatidylcholine by cholinephosphotransferase occurs in the neuronal and glial cell bodies, it was concluded that cholinephosphotransferase is a satisfactory marker for the endoplasmic reticulum derived from these sources. The results suggest that NADPH-cytochrome c reductase and estrone sulfatase may be present in the smooth endoplasmic reticulum system responsible for the fast transport of macromolecules along the axon to the nerve endings as well as in the endoplasmic reticulum of the cell bodies. The possible relation between that portion of the smooth endoplasmic reticulum involved in fast axonal transport and the GERL (Golgi, Endoplasmic Reticulum, Lysosomes) complex discovered by Novikoff and his coworkers (Novikoff , 1976) is discussed.  相似文献   

5.
The cross-reactivity of human placental microsomal NADPH-cytochrome c reductase antiserum, REDFBIV, against the endometrial reductase alone and as a component of the endometrial aromatase was investigated. Human endometrial particulate fractions were incubated with various amounts of REDFBIV for 1 h at 4 degrees C and both enzyme activities were measured at the end of incubation. The extent of inhibition of these endometrial enzymes was compared with the ability of this antiserum to inhibit the placental microsomal reductase and aromatase activities. The antiserum effectively inhibited the activities of both enzymes in both tissues in a dose dependent manner with aromatase activity inhibited to a greater extent than reductase activity. These results indicate the antiserum to the placental microsomal NADPH-cytochrome c reductase component of aromatase recognizes the reductase component of the aromatase enzyme system in endometrium.  相似文献   

6.
A primary objective of the present study has been to determine the changes which occur in Rana catesbeiana liver organelle membranes during thyroxine-induced metamorphosis. To this end, enzyme and cytochrome profiles were determined for mitochondria, microsomes, and nuclear membrane fractions isolated from livers of R. catesbeiana tadpoles which had been fasted for 6 days at 15 +/- 0.5 degrees and then immersed in thyroxine, 2.6 X 10(-8) M, for periods of up to 12 days at 23.5 +/- 0.4 degrees. The ratio of total succinate-cytochrome c reductase activity in the initial homogenate fraction to the total activity of this mitochondrial "marker" enzyme recovered in the final mitochondrial fraction remained constant, approximately 0.5, throughout the course of thyroxine treatment; however, after a 3- to 4-day latency the mitochondrial protein mass recovered per unit mass of initial homogenate protein was found to increase significantly (approximately 2-fold by Day 10 of thyroxine treatment). A similar increase was also observed in the yield of microsomal, but not nuclear membrane, protein mass as a function of thyroxine treatment. Prolonged thyroxine treatment (12 days) resulted in approximately 50% decreases in tadpole liver homogenate and microsomal NADH-cytochrome c reductase specific activities; in contrast, mitochondrial and nuclear membrane NADH-cytochrome c reductase specific activities were not altered under the same conditions. In addition, homogenate and microsomal NADPH-cytochrome c reductase specific activities were found to have increased significantly after 12 days of thyroxine treatment; however, the specific activity of NADPH-cytochrome c reductase in the mitochondrial fraction was unchanged. It was also observed that thyroxine treatment resulted in increases in homogenate and microsomal glucose-6-phosphatase specific activities, whereas the mitochondrial as well as nuclear membrane glucose-6-phosphatase specific activities remained unchanged. Furthermore, in contrast to homogenate and mitochondrial monoamine oxidase specific activities, which decreased 30 and 40%, respectively, as a consequence of thyroxine treatment (12 days), the succinate-cytochrome c reductase and oligomycin-sensitive Mg2+ ATPase specific activities determined for these fractions increased significantly. In all instances, changes as a result of thyroxine treatment in membrane-localized homogenate or organelle enzyme specific activities were apparent only after a 3- to 4-day initial latent period. The in vitro effects of thyroxine (10(-10) - 10(-5) M) on the membrane-localized enzyme activities examined in this study were either negligible or, as in the case of mitochondrial succinate-cytochrome c reductase and microsomal NADH-cytochrome c reductase, opposite to the changes observed in response to in vivo thyroxine treatment, with the exception of microsomal NADPH-cytochrome c reductase activity which was enhanced approximately 2-fold by 10(-5) M thyroxine...  相似文献   

7.
Coated vesicles were isolated from rat liver in about 80% fraction purity as determined from electron microscopy and analyses of marker enzymes and compared with Golgi apparatus and other membrane fractions isolated in parallel. The fractions were enriched in NADH-monodehydroascorbate reductase, ascorbate oxidase and ascorbic acid. The NADH-monodehydroascorbate reductase and ascorbate oxidase of the Golgi apparatus and coated vesicles differed from that of the endoplasmic reticulum in being inhibited by the sodium selective ionophore, monensin, at physiological concentrations while these activities were stimulated by ethylenediaminetetraacetic acid in coated vesicles but not in Golgi apparatus. Activities of both coated vesicles and Golgi apparatus fractions depleted in the coat protein, clathrin, were activated by the addition of clathrin-rich supernatant fractions. The results are discussed in the context of monodehydroascorbate as an acceptor for electron transport-mediated transfer of electrons from NADH by coated vesicles as part of a possible mechanism to drive membrane translocations or to acidify the interiors of vesicles.  相似文献   

8.
The influence of the mode of preparation upon some of the characteristics of white adipose tissue plasma membranes and microsomes has been reported. Plasma membrane fractions prepared from mitochondrial pellet were shown to have higher specific activities of (Mg2+ + Na+ + K+)-ATPase than plasma membranes originating in crude microsomes. Isolation of fat cells by collagenase treatment was found to result in a decrease in specific activity of the plasma membrane enzymes; in plasma membranes prepared from isolated fat cells, the specific activity values obtained for (Mg2+ + Na+ +k+)-ATPase and 5'-nucleotidase were only 42% and 6.3% respectively of those obtained in plasma membranes prepared from whole adipose tissue. Purification of whole adipose tissue crude microsomes by hypotonic treatment caused extensive solubilization of the endoplasmic reticulum marker enzymes, NADH oxidase and NADPH cytochrome c reductase. The lability of endoplasmic reticulum marker enzymes, however, was found to be greatly diminished in the preparations from isolated fat cells. The possibility that NADH oxidase and NADPH cytochrome c reductase activities found in the plasma membranes are microsomal enzymes adsorbed by the plasma membranes is discussed. The peptide patterns as well as the NADH oxidase and NADPH cytochrome c reductase activity patterns of plasma membranes and purified microsomes were compared by means of sodium dodecyl sulfate or Triton X-100 polyacrylamide gel electrophoresis.  相似文献   

9.
Fractions of plasma membranes, Golgi apparatus, endoplasmic reticulum (ER), and nuclear envelope were isolated from rat liver and were characterized by electron microsocpe and biochemical methods. The purity of the fractions was controlled by morphometry and by marker enzyme activities. Amounts of cytochromes b5, P-450, and P-420 were measured, as well as the NADPH- and NADPH-cytochrome c reductase activities. The pigments of the microsomal electron transport system were found in all membrane fractions in relatively high amounts, thus excluding an origin by microsomal contamination. Purified preparations of plasma membrane and Golgi apparatus contained approximately 30% of the cytochrome b5 and cytochrome P-450 + P-420 found in ER membranes. Plasma membranes were also characterized by a high ratio of P-420/450. Degradation of cytochromes P-450 and P-420 was relatively rapid in all fractions, except in the ER. Cytochrome b5 extracted from plasma membranes was spectrophotometrically and enzymatically indistinguishable from ER cytochrome b5. However, immunnlogical characterization with rabbit antibodies against the trypsin-resistant core of microsomal cytochrome b5 showed the presence of at least two types of cytochrome b5 in ER membranes, in contrast to the plasma membranes in which only one of these components was detected. This immunological differentiation also demonstrates that the plasma membrane-bound cytochrome b5 is endogenous to this membrane and does not reflect contamination by ER elements. We conclude that cytochromes b5, P-450, and P-420 are not confined only to ER and nuclear membranes but also occur in signficant amounts in Golgi apparatus and plasma membranes. The findings are discussed in relation to observations of similar redox components in Golgi apparatus, secretory vesicles, and plasma membranes of other cells.  相似文献   

10.
The subcellular distribution of four enzymes (glucose-6-phosphatase, phosphodiesterase I, NADPH-cytochrome c reductase, and p-nitroanisole O-demethylase) in the midgut of “wandering” fifth-instar larvae of the tobacco hornworm, Manduca sexta (L), was determined and the composition of mitochondrial and microsomal pellets was examined by electron microscopy. Most of the glucose-6-phosphatase activity and one-third of the phosphodiesterase I activity were found in the high-speed supernatant. NADPH-cytochrome c reductase activity was marginal and O-demethylase activity was undetectable in the supernatant. The highest specific activities for phosphodiesterase I, NADPH-cytochrome c reductase, and p-nitroanisole O-demethylase were measured in microsomes, but the relative specific activity of phosphodiesterase I was only half that obtained with the latter two enzymes. In all subcellular preparations the relative specific activities of NADPH-cytochrome c reductase and p-nitroanisole O-demethylase were closely correlated. It is concluded that glucose-6-phosphatase and phosphodiesterase I are not microsomal marker enzymes in the midgut, but the activities of NADPH-cytochrome c reductase and p-nitroanisole O-demethylase are quantitative measures of microsomal content.  相似文献   

11.
Rabbit antibody was prepared against NADPH-cytochrome c reductase of Tetrahymena microsomes. When examined by the Ouchterlony double diffusion test, anti-NADPH-cytochrome c reductase immunoglobulin formed a single precipitation line with Tetrahymena reductase but not rat liver one. The antibody inhibited the NADPH-cytochrome c reductase activity of Tetrahymena microsomes, but it did not affect either NADH-ferricyanide or NADH-cytochrome c reductase activity of Tetrahymena microsomes. The NADPH-dependent desaturation of stearoyl-CoA in Tetrahymena microsomes was inhibited by anti-reductase immunoglobuline, while the NADH-dependent desaturation was affected by neither anti-reductase nor control immunoglobuline. It was suggested that the temperature associated-alteration of NADPH-cytochrome c reductase activities would be important for regulation of microsomal NADPH-dependent desaturase activities in Tetrahymena which contains no cytochrome P-450.  相似文献   

12.
Alkaline phosphatase was released from protoplasts of the yeast Saccharomyces cerevisiae without cell lysis not only by phosphatidylinositol (PI)-specific phospholipase C but also by phosphatidylcholine (PC)-hydrolyzing phospholipase C. Activities of mitochondrial enzymes such as succinate dehydrogenase, antimycin-sensitive NADH-cytochrome c reductase, and oligomycin-sensitive ATPase were decreased by the action of PC-hydrolyzing phospholipase C. Hydrolysis of microsomal PC or PI did not cause any decrease in the activities of NADPH-cytochrome c reductase and antimycin-insensitive NADPH-cytochrome c reductase. In the requirement of phospholipids, the properties of yeast mitochondrial enzymes were very close to those of mammalian mitochondrial enzymes, whereas those of yeast microsomal enzymes were completely different from those of mammalian microsomal enzymes.  相似文献   

13.
Comparison of the microsomal NADPH-cytochrome c reductase activities in the four Tetrahymena cells (pyriformis, strain GL and NT-1; thermophilia; ISO) and rat liver was studied. The reductase activity in strain NT-1 was lowest among four Tetrahymena cells grown at 24 degrees C. Rabbit antibody was prepared against the purified NADPH-cytochrome c reductase from Tetrahymena pyriformis (strain NT-1) microsomes. Microsomal NADPH-cytochrome c reductase activities in various Tetrahymena cells were inhibited in proportion to the amount of antibody added, in the order of GL greater than NT-1 greater than thermophilia greater than ISO. No inhibition of reductase activity by antibody was observed in rat liver microsomes.  相似文献   

14.
A method is described for isolation of an enriched fraction of plasma membranes from gypsy moth (Lymantria dispar) larval midgut tissue. Following differential centrifugation of tissue homogenate, a microsomal sample is obtained and fractionated on a Percoll®-sucrose gradient that yields 2 distinct regions of high protein concentration: one enriched in plasma membranes, the other in mitochondrial membranes. The procedure is relatively rapid, being completed within approximately 5 h. Protein yields and accompanying specific activities are reported for marker enzymes used to indicate the presence of plasma membranes (leucine aminopeptidase and alkaline phosphatase), endoplasmic reticulum (NADPH-cytochrome c reductase), and mitochondria (succinate dehydrogenase). The apparent differences between the plasma membrane enriched fraction vs. brush border membrane vesicles prepared from insect midguts are discussed, as is the suitability of the plasma membrane enriched fraction for ATP-dependent calcium ion transport studies. © 1992 Wiley-Liss, Inc.  相似文献   

15.
The present study was designed to prepare and characterize subcellular fractions from the intestinal mucosa of the Northern pike (Esox lucius), with special emphasis on the preparation of a microsomal fraction suitable for studying xenobiotic metabolism. The purity of the different fractions obtained by differential centrifugation, as well as the recovery of different organelles, was determined using both enzyme markers and morphological examination with the electron microscope. The subcellular distributions of several enzymes involved in drug metabolism (NADPH-cytochrome c reductase, NADH-ferricyanide reductase, epoxide hydrolase activity towards both cis- and trans-stilbene oxide as substrates, and glutathione transferase) were also examined. The subcellular distributions obtained here for drug-metabolizing and marker enzymes closely resembled those reported for rat and pike liver. The microsomal fraction obtained contained about 50% of the total endoplasmic reticulum. This fraction was relatively free of nuclei, mitochondria, Golgi, peroxisomes and cytosol, but relatively heavily contaminated with lysosomes and fragments of the plasma membrane. Within the limitations discussed, the subfractions prepared here are suitable for further characterization of drug-metabolizing systems in the intestinal mucosa of the Northern pike, as well as for other studies with this tissue.  相似文献   

16.
Preparations enriched with plasmalemmal, outer mitochondrial, or Golgi complex membranes from rat liver were subfractionated by isopycnic centrifugation, without or after treatment with digitonin, to establish the subcellular distribution of a variety of enzymes. The typical plasmalemmal enzymes 5'-nucleotidase, alkaline phosphodiesterase I, and alkaline phosphatase were markedly shifted by digitonin toward higher densities in all three preparations. Three glycosyltransferases, highly purified in the Golgi fraction, were moderately shifted by digitonin in both this Golgi complex preparation and the microsomal fraction. The outer mitochondrial membrane marker, monoamine oxidase, was not affected by digitonin in the outer mitochondrial membrane marker, monoamine oxidase, was not affected by digitonin in the out mitochondrial membrane preparation, in agreement wit its behavior in microsomes. With the exception of NADH cytochrome c reductase (which was concentrated in the outer mitochondrial membrane preparation), typical microsomal enzymes (glucose-6-phosphatase, esterase, and NADPH cytochrome c reductase) displayed low specific activities in the three preparations; except for part of the glucose-6-phosphatase activity in the plasma membrane preparation, their density distributions were insensitive to digitonin, as they were in microsomes. The influence of digitonin on equilibrium densities was correlated with its morphological effects. Digitonin induced pseudofenestrations in plasma membranes. In Golgi and outer mitochondrial membrane preparations, a few similarly altered membranes were detected in subfractions enriched with 5'-nucleotidase and alkaline phosphodiesterase I. The alterations of Golgi membranes were less obvious and seemingly restricted to some elements in the Golgi preparation. No morphological modification was detected in digitonin-treated outer mitochondrial membranes. These results indicate that each enzyme is associated with the same membrane entity in all membrane preparations and support the view that there is little overlap in the enzymatic equipment of the various types of cytomembranes.  相似文献   

17.
Alpha-1,4-galacturonosyltransferase (GalAT) is an enzyme required for the biosynthesis of the plant cell wall pectic polysaccharide homogalacturonan (HGA). GalAT activity in homogenates from pea (Pisum sativum L. var. Alaska) stem internodes co-localized in linear and discontinuous sucrose gradients with latent UDPase activity, an enzyme marker specific for Golgi membranes. GalAT activity was separated from antimycin A-insensitive NADH:cytochrome c reductase and cytochrome c oxidase activities, enzyme markers for the endoplasmic reticulum and the mitochondria, respectively. GalAT and latent UDPase activities were separated from the majority (80%) of callose synthase activity, a marker for the plasma membrane, suggesting that little or no GalAT is present in the plasma membrane. GalAT activities in proteinase K-treated and untreated Golgi vesicles were similar, whereas no GalAT activity was detected after treating Golgi vesicles with proteinase K in the presence of Triton X-100. These results demonstrate that the catalytic site of GalAT resides within the lumen of the Golgi. The products generated by Golgi-localized GalAT were converted by endopolygalacturonase treatment to mono- and di-galacturonic acid, thereby showing that GalAT synthesizes 1-->4-linked alpha-D-galacturonan. Our data provide the first enzymatic evidence that a glycosyltransferase involved in HGA synthesis is present in the Golgi apparatus. Together with prior results of in vivo labeling and immunocytochemical studies, these results show that pectin biosynthesis occurs in the Golgi. A model for the biosynthesis of the pectic polysaccharide HGA is proposed.  相似文献   

18.
NADPH-cytochrome c reductase (NADPH : ferricytochrome oxido-reductase, EC 1.6.2.4), the flavoprotein which mediates the NADPH-dependent reduction of cytochromes P-450 in adrenocortical microsomes, has been localized immunohistochemically at the light microscopic level in rat adrenal glands. Localization was achieved through the use of sheep antiserum produced against purified, trypsin-solubilized rat hepatic microsomal NADPH-cytochrome c reductase in both an unlabeled antibody peroxidase-antiperoxidase technique and an indirect fluorescent antibody method. The sheep antibody to rat hepatic microsomal NADPH-cytochrome c reductase concomitantly inhibited the NADPH-cytochrome c reductase and progesterone 21-hydroxylase activities catalyzed by isolated rat adrenal microsomes. When sections of rat adrenal glands were exposed to the reductase antiserum in both immunohistochemical procedures, positive staining for NADPH-cytochrome c reductase was observed in parenchymal cells of the three cortical zones but not in medullary chromaffin cells. The intensity of staining, however, was found to differ among the three cortical zones, with the most intense staining being found in the zona fasciculata and the least in the zona glomerulosa. The intensity of staining was also found to differ among cells within the zona fasciculata. These immunohistochemical observations demonstrate that microsomal NADPH-cytochrome c reductase is not distributed uniformly throughout the rat adrenal cortex.  相似文献   

19.
Polyclonal antibodies were prepared against NADPH-cytochrome P-450 reductase purified from Jerusalem artichoke. These antibodies inhibited efficiently the NADPH-cytochrome c reductase activity of the purified enzyme, as well as of Jerusalem artichoke microsomes. Likewise, microsomal NADPH-dependent cytochrome P-450 mono-oxygenases (cinnamate and laurate hydroxylases) were efficiently inhibited. The antibodies were only slightly inhibitory toward microsomal NADH-cytochrome c reductase activity, but lowered NADH-dependent cytochrome P-450 mono-oxygenase activities. The Jerusalem artichoke NADPH-cytochrome P-450 reductase is characterized by its high Mr (82,000) as compared with the enzyme from animals (76,000-78,000). Western blot analysis revealed cross-reactivity of the Jerusalem artichoke reductase antibodies with microsomes from plants belonging to different families (monocotyledons and dicotyledons). All of the proteins recognized by the antibodies had an Mr of approx. 82,000. No cross-reaction was observed with microsomes from rat liver or Locusta migratoria midgut. The cross-reactivity generally paralleled well the inhibition of reductase activity: the enzyme from most higher plants tested was inhibited by the antibodies; whereas Gingko biloba, Euglena gracilis, yeast, rat liver and insect midgut activities were insensitive to the antibodies. These results point to structural differences, particularly at the active site, between the reductases from higher plants and the enzymes from phylogenetically distant plants and from animals.  相似文献   

20.
Vesicular fragments of Golgi apparatus, smooth- and rough-surfaced microsomes from rat liver are differently partitioned in aqueous polymer two-phase systems consisting of dextran, polyethylene glycol, and sodium phosphate buffer. At a given polymer concentration, the amount of material partitioned in the top phase increases in the following order: rough microsomes less than smooth microsomes less than Golgi fragments. Counter-current distribution of Golgi fragments in the system consisting of 6.8% (w/w) dextran T500 and 6.8% polyethylene glycol 4,000 results in the separation of the fragments into three fractions; i.e. Fractions I, II, and III. NADH- and NADPH-cytochrome c reductase activities are detected almost exclusively in Fraction I, whereas the activities of galactosyltransferase, acid phosphatase, 5'-nucleotidase, and thiamine pyrophosphatase are maximal in Fraction III and minimal in Fraction I. The distribution of these enzymes suggests that Fraction I is similar to, though not identical with, microsomes, Fraction III resembles plasma membrane and lysosomes, and Fraction II is between the two. It is concluded that NADH- and NADPH-cytochrome c reductases are localized in a restricted region of the Golgi structure and that intra-Golgi differentiation seems to proceed in a discontinuous manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号