首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Gibberellin levels and cold-induced floral stalk elongation in tulip   总被引:2,自引:0,他引:2  
To investigate the role of gibberellins (GAs) in the cold requirement of tulip ( Tulipa gesneriana L. cv. Apeldoorn), bulbs were dry-stored at 5°C or at 17°C for 12 weeks prior to planting at 20°C. Only precooled bulbs showed rapid sprout growth and developed a full-grown flower. Endogenous GA levels were measured in sprouts and basal plates at the time of planting and in the second week after planting, by combined gas chromatography-mass spectrometry using deuterated internal standards. GA4 was the major gibberellin. while GA1, GA9 and GA34 were present in lower amounts. At the time of planting, sprouts from non-cooled bulbs contained significantly more GA4 and GA1, per sprout than those from precooled bulbs. Hence, there is no direct correlation between rapid sprout growth after planting and high GA levels at planting. In the second week after planting, floral stalks of precooled bulbs contained 2 to 3 times more GA4 and its metabolite GA34 per floral stalk and per g fresh weight than those of non-cooled bulbs. The results are discussed with regard to the role of gibberellins in the cold-induced floral stalk elongation of tulip.  相似文献   

2.
Endogenous gibberellins (GAs) in corms of Polianthes tuberosa L. (cv. Double) were isolated and identified by high performance liquid chromatography, bioassay and combined capillary gas chromatography-mass spectrometry (GC-MS). Gibberellins A1, A19, A20 and A53 were quantified at the vegetative, early floral initiation and flower development stages. The identification of 13-hydroxylated GAs indicates the presence of the early 13-hydroxylation pathway in P. tuberosa corms. An increase in GA1 and GA20, and a decrease in GA19 levels, coincided with the transition from the vegetative phase to the stages of early floral initiation and flower development. GA53 stayed at constant levels at the 3 different growth stages. The absence of GA1 in vegetative corms and its presence in corms at early floral initiation and flower development stages suggest that GA1 is a causal factor in inducing floral initiation in P. tuberosa . When GA1, GA3, GA4, GA20 and GA32 were applied to corms at the vegetative stage (plants about 5 cm in height), floral initiation was promoted by all of the GAs used, GA32 being the most active. In contrast with the other GAs, GA32 had no effect on stem elongation. Therefore, it is suggested that hydroxylated C-19 GAs play an important role in flower induction in P. tuberosa .  相似文献   

3.
Gibberellins and the floral transition in Sinapis alba   总被引:3,自引:0,他引:3  
The putative role of gibberellins in the transition to flowering was investigated in Sinapis alba , a caulescent long-day (LD) plant. It was observed that: (1) physiological doses of exogenous gibberellins (GA1, GA3, GA9) do not cause the floral shift of the meristem when applied to plants grown in short days but have some positive effect on the flowering response to a suboptimal LD; no inhibition was observed in any case; (2) GA-biosynthesis inhibitors (prohexadione-Ca and paclobutrazol) considerably inhibit stem growth but have some negative effect on flowering only when a suboptimal LD is given; and (3) the floral transition induced by one 22-h LD does not correlate with any detectable change in GA content of the apical bud, of the leaves, and of the phloem exudate reaching the apex. Taken together, these results suggest that GAs do not act as a major signal for photoperiodic flower induction in Sinapis .  相似文献   

4.
To study the role of translocation of gibberellin (GA) intermediates or bioactive GAs from other plant parts to buds during early flower development in tomato ( Solanum lycopersicon ), the effect of grafting and paclobutrazol (PAC) treatment on the expression of tgas100 and tgas118 , two GA-regulated mRNAs, was analysed. Both mRNAs accumulated in a dose-dependent fashion. Application of 0.5 ng GA3 per bud to developmentally arrested flower buds of a GA-deficient mutant of tomato ( gib-1 ) induced tgas100 expression, while the tgas118 abundance increased. For obtaining normal flower development through anthesis in the mutant, a single GA3 treatment was required of at least 5 ng GA3 per bud. In wild-type flower buds, PAC decreased the abundance of tgas100 and tgas118 mRNAs either when PAC was sprayed on whole plants or directly applied to buds. When only the wild-type buds were treated with PAC, the expression profiles characteristic for untreated buds were not restored by translocation of endogenous GAs. Grafting of gib-1 scions onto wild-type donor plants did not result in normal flower development or expression profiles like in wild-type buds. We conclude that the role of GA transport in early flower development of tomato is negligible and that the GAs required for development have to be synthesized in the flower bud itself.  相似文献   

5.
The role of gibberellins (GAs) in the induction of parthenocarpic fruit-set and growth by the pat-3/pat-4 genetic system in tomato ( Lycopersicon esculentum Mill.) was investigated using wild type (WT; Cuarenteno) and a near-isogenic line derived from the German line RP75/59 (the source of pat-3/pat-4 parthenocarpy). Unpollinated WT ovaries degenerated but GA3 application induced parthenocarpic fruit growth. On the contrary, parthenocarpic growth of pat-3/pat-4 fruits, which occurs in the absence of pollination and hormone treatment, was not affected by applied GA3. Unpollinated pat-3/pat-4 fruit growth was negated by paclobutrazol, an inhibitor of ent -kaurene oxidase, and this inhibitory effect was negated by GA3. The quantification of the main GAs of the early 13-hydroxylation pathway (GA1, GA8, GA19, GA20, GA29 and GA44) in unpollinated ovaries at 3 developmental stages (flower bud, FB; pre-anthesis, PR; and anthesis, AN), by gas chromatography-selected ion monitoring, showed that the concentration of most of them was higher in pat-3/pat-4 than in WT ovaries at PR and AN stages. The concentration of GA1, suggested previously to be the active GA in tomate, was 2–4 times higher. Unpollinated pat-3/pat-4 ovaries at FB, PR and AN stages also contained relatively high amounts (5–12 ng g−1) of GA3, a GA found at less than 0.5 ng g−1 in WT ovaries. It is concluded that the mutations pat-3/pat-4 may induce natural facultative parthenocarpy capacity in tomato by increasing the concentration of GA1 and GA3 in the ovaries before pollination.  相似文献   

6.
Transgenic plants of Nicotiana tabacum overexpressing a gibberellin (GA) 20-oxidase cDNA ( CcGA20ox1 ) from citrus, under the control of the 35S promoter, were taller (up to twice) and had larger inflorescences and longer flower peduncles than those of control plants. Hypocotyls of transgenic seedlings were also longer (up to 4 times), and neither the seedlings nor the growing plants elongated further after application of GA3. Hypocotyl and stem lengths were reduced by application of paclobutrazol, and this inhibition was reversed by exogenous GA3. The ectopic overexpression of CcGA20ox1 enhanced the non-13-hydroxylation pathway of GA biosynthesis leading to GA4, apparently at the expense of the early-13-hydroxylation pathway. The level of GA4 (the active GA from the non-13-hydroxylation pathway) in the shoot of transgenic plants was 3–4 times higher than in control plants, whereas that of GA1, formed via the early-13-hydroxylation pathway (the main GA biosynthesis pathway in tobacco), decreased or was not affected. GA4 applied to the culture medium or to the expanding leaves was found to be at least equally active as GA1 on stimulating hypocotyl and stem elongation of tobacco plants. The results suggest that the tall phenotype of tobacco transgenic plants was due to their higher content of GA4, and that the GA response was saturated by the presence of the transgene.  相似文献   

7.
The plant-growth-promoting rhizobacteria (PGPR), Bacillus pumilus and Bacillus licheniformis, isolated from the rhizosphere of alder ( Alnus glutinosa [L.] Gaertn.) have a strong growth-promoting activity. Bioassay data showed that the dwarf phenotype induced in alder seedlings by paclobutrazol (an inhibitor of gibberellin [GA] biosynthesis) was effectively reversed by applications of extracts from media incubated with both bacteria and also by exogenous GA3. Full-scan gas chromatography-mass spectrometry analyses on extracts of these media showed the presence of GA1, GA3, GA4and GA20, in addition to the isomers 3- epi -GA1 and iso -GA3. Isotope dilution analysis indicated that epi -GA1 was an artefact. Likewise, iso -GA3 is also probably an artifact spontaneously formed during extraction and/or analysis. In both culture media, GA1 was present in higher concentrations (130–150 ng ml−1) than GA3 (50–60 ng ml−1), GA4 (8–12 ng ml−1) and GA20 (2–3 ng ml−1). The data indicated that culture of both bacteria accumulate bioactive C19-gibberellins in relative high amounts and that these GAs appear to be physiologically active in the host plant. The evidence suggests that the promotion of stem elongation induced by the PGPR could be mediated by bacterial GAs.  相似文献   

8.
Short photoperiod induces growth cessation in seedlings of Norway spruce ( Picea abies (L.] Karst.). Application of different gibberellins (GAS) to seedlings growing under a short photoperiod show that GA9 and GA20 can not induce growth. In contrast application of GA, and GA4 induced shoot elongation. The results indicate that 3β-hydroxylation of GA9 to GA4 and of GA20 to GA1 is under photoperiodic control. To confirm that conclusion, both qualitative and quantitative analyses of endogenous GAs were performed. GA1, GA3, GA4, GA7, GA9, GA12, GA15, GA15, GA20, GA29, GA34 and GA51 were identified by combined gas chromatography-mass spectrometry in shoots of Norway spruce seedlings. The effect of photoperiod on GA levels was determined by using deuterated and 14C-labelled GAs as intermal standards. In short days, the amounts of GA9, GA4 and GA1 are less than in plants grown in continuous light. There is no significant difference in the amounts of GA3, GA12, and GA20 between the different photoperiods. The lack of accumulation of GA9 and GA20 under short days is discussed.  相似文献   

9.
The physiological response of cowpea ( Vigna sinensis L.) epicotyl explants to far‐red light (FR) and its interaction with gibberellins (GAs) have been investigated. The effect of FR and GA1 varied with the age of the seedlings from which the explants were made: for FR, it decreased progressively with age (though the sensitivity of the epicotyls to FR did not change significantly until at least day 11), whereas it remained essentially constant for applied GA1 between days 5 and 9 after sowing. This indicates that the loss of response to FR may be due to a decrease in endogenous GA levels in the epicotyl. For a range of GA1 and GA20 (0.01–1 µg explant−1), both hormones were more active in FR than in R irradiated epicotyls, suggesting that phytochrome may affect GA sensitivity besides GA metabolism. The location of the epicotyl region most sensitive to FR (between 5 and 20 mm below the apex) was different from that to GAs (the upper 10 mm). Nevertheless, FR extended the region responsive to applied GAs, even in paclobutrazol‐treated epicotyls where elongation was due entirely to exogenous GAs. This means that modulation of epicotyl elongation by phytochrome, that occurs in a zone different from though overlapping with the GA‐sensitive subapical zone, is also mediated by GAs. Growth in the most FR‐sensitive region of the epicotyl stimulated by FR or GA1 was due to cell elongation, and in the most GA‐sensitive region to both cell division and elongation. The effect of FR and GA1 was negated by colchicine, indicating that microtubules may be involved in the response to both factors.  相似文献   

10.
We describe a new mutation, lrs , which reduces internode length in Pisum sativum L. The mutation appears to act by reducing both GA synthesis and the response to GA1. The levels of the 13‐hydroxylated GAs, GA53, GA44, GA19, GA20, GA1, and GA8 in the lrs mutant were greatly reduced compared with the wild‐type. The extent of the reduction in GA1 content in the apical tissues would, at least in part, account for the dwarf phenotype of the mutant. The reduced GA responsiveness of the new mutant was indicated by the inability of applied GA1 to remove the difference in elongation between lrs and LRS plants. The lrs mutant appears to be unique amongst internode length genotypes, possessing characteristics of both GA synthesis and GA response mutants.  相似文献   

11.
It has been shown previously that gibberellins (GAs) mediate the phytochrome (Phy) control of cowpea ( Vigna sinensis L.) epicotyl elongation induced by end-of-day (EOD)-far-red light (FR). In the present work, the EOD-FR effect on GA metabolism and GA levels in cowpea has been investigated. GA1, GA8, GA19 and GA20 were identified in epicotyls, and GA1, GA19, GA20 and GA29-catabolite in leaves of 6-day-old cowpea seedlings. The content of GA1 in the epicotyl paralleled the decrease of its growth rate, supporting the hypothesis that this is the GA bioactive in controlling cowpea epicotyl elongation. FR enhanced both the amount of [3H]GA1 in the epicotyl produced from applied [3H]GA20, and that of applied [3H]GA1 that remained unmetabolized in epicotyl explants, suggesting that Phy may regulate the inactivation of GA1. In agreement with this effect of light on GA1 metabolism, the contents of GA1 in the epicotyl remained higher in FR-treated than in R-treated explants. Moreover, in intact seedlings EOD-FR treatment increased both epicotyl elongation and GA1 content in the responsive epicotyl, whereas it was not altered in the leaves. These results show, for the first time, that photostable Phys modulate the stem elongation in light-grown plants by locally controlling the GA1 levels through regulation of its inactivation.  相似文献   

12.
The role of gibberellin (GA) in leaf elongation has long been known, however, its involvement in whole shoot growth and biomass allocation is much less clear. We studied the effects of exogenously supplied GA3 and paclobutrazol, an inhibitor of GA biosynthesis, on these processes in Aegilops caudata and Aegilops tauschii , species with contrasting leaf growth characteristics. In both species, addition of GA3 increased leaf elongation rate (LER) through its promoting effect on both cell size and cell number, while paclobutrazol decreased it. Similarly, GA3 increased biomass allocation to the leaves, mainly leaf sheaths, at the cost of allocation to the roots, whereas paclobutrazol had the opposite effect in both species. Despite the increase in LER and biomass allocation to the shoot upon GA3 application, the relative growth rate (RGR) remained constant. Specific leaf area (SLA) was only temporarily affected by GA3 addition. Our results show that the inherent differences in LER and biomass allocation between the slow-elongating A. caudata and the fast-elongating A. tauschii are considerably reduced by the exogenous supply of GA3 to the slow-elongating species, or paclobutrazol to the fast-elongating one. This suggests a role for gibberellins in explaining inherent differences in leaf area expansion and biomass allocation between the two species in this study.  相似文献   

13.
Plants of annual celery ( Apium graveolens L.) were treated with paclobutrazol during anthesis. Seeds collected from the treated plants showed a marked reduction in germination in light and failed to germinate in the dark. Application of GA4/7 to the imbibition solution reversed the inhibitory effect of paclobutrazol while gibberellic acid (GA3) was ineffective. Benzyladenine (BA) interaction with GA4/7 was light and concentration-dependent. At relatively low concentrations in the dark there was a synergistic effect, but at higher concentrations, especially in the light, BA, antagonized the GA4/7 effect. Seedlings emerging from the seeds from paclobutrazol-treated plants were only slightly shortened. It is suggested that paclobutrazol applied to the mother plants inhibited the biosynthesis of endogenous GAs, which normally enable the germination of annual seeds under unfavorable conditions. Exogenously applied GA4/7 fulfills the function of the absent endogenous GAs.  相似文献   

14.
15.
16.
Plants of Poa pratensis cv. Holt initiate inflorescence primordia when exposed to short days (SD) and low temperature, but require a secondary induction by at least 4 long days (LD) for further inflorescence development and stem elongation. Single or double applications of 10 µg per plant of gibberellins A1, A3, A5 and 16,17‐dihydro A5 (DHGA5) induced inflorescence development in a high proportion of plants in SD, but only if the plants were detillered to a single stem. Exposure to 2 LD cycles did not cause heading and flowering alone but enhanced the effect of exogenous gibberellins (GAs), bringing flowering to 100%. GA5 and DHGA5 were less effective than GA1 and GA3 in SD, especially with double applications, but were more effective than GA1 and GA3 when given together with 2 LD. The GAs had differential effects on vegetative growth and flowering, GA5 and DHGA5 causing much less leaf and stem growth than the other two GAs. Marginal induction, whether by LD or GA application, resulted in a high proportion of spikelets with viviparous proliferation. Thus, whereas GAs are inhibitory to the primary induction by SD, they can replace secondary induction by LD when vegetative growth is limited.  相似文献   

17.
The metabolism of GA10 is thought to be under photoperiodic control in the woody plant Salix pentandra . However, in a recent study using 16,17-[3H2]GA19 as a mimic of Ga10, no effect of photoperiod was found on its metabolism to 16,17-dihydro-GA20 and 16,17-dihydro-GA1. To investigate if this was due to differential action of exogenous 16,17-dihydro-GAs and GAs, the effects of the 16,17-dihydro-derivatives of the gibberellins GA19, GA1, and GA1 as compared with their parent GAs, on shoot elongation in seedlings of S. pentandra were studied. 16,17-Dihydro-GA19, and -GA20 were both almost inactive, while 16,17-dihydro-GA1 induced some shoot elongation in seedlings treated with ancymidol as well as under short days. GA19, GA20 and GA1 were all able to counteract the inhibitory effect of ancymidol under continuous light, while inhibition induced by a 12-h photoperiod was antagonised only by GA20 and GA1. Thus, the growth-stimulating activity of the tested GAs is significantly reduced by 16,17-dihydro derivatisation, but the derivatives do not inhibit stem elongation in S, pentandra , as has been found in monocotyledons.  相似文献   

18.
Gibberellins Al (GA1), GA3, GA4, GA9, and after enzymatic hydrolysis of GA-conjugate-like fractions, GA9 and GA15, were identified in shoots of Sitka spruce [ Picea sitchensis (Bong.) Carr.] of different ages by combined gas chromatography-mass spectrometry (GC-MS). The purification and separation of the GAs involved the use of reverse phase and normal phase high performance liquid chromatography (HPLC). The Tan-ginbozu dwarf rice bioassay and binding to antibodies raised against GA1, GA4 and GA9 were used for detection of GA-like substances. The qualitative differences between the three ages of plant material were the presence of GA3 and GA1 in the 48-year-old material and the absence of detectable amounts of GA4 in the same material. This indicates a difference in GA metabolism which may reflect the difference in ability to form reproductive buds.  相似文献   

19.
The regulation by phytochrome of stem elongation in light-grown plants depends on gibberellins (GAs). To investigate whether this is mediated by a change in GA metabolism, the effect of the GA biosynthesis inhibitor LAB 198 999 (an acylcyclohexadione derivative) on the end-of-day far-red (FR) response in cowpea ( Vigna sinensis L.) epicotyl explants has been investigated. Growth of epicotyl explants of light-grown seedlings was enhanced when treated with far-red light before incubation in the dark (end-of-day FR effect). Low doses of LAB 198 999 (0.05 and 0.5 μg explant−1) reduced the effect of FR, whereas 5 to 50 μg explant−1 stimulated elongation of both red light (R)- and FR-treated epicotyl explants while nullifying the differences between R and FR treatments. In paclobutrazol-treated epicotyl explants, FR enhanced the response to applied GA1 and GA20, whereas LAB 198 999 increased the activity of GA1 and decreased that of GA20, [3H]Gibberellin A1, injected into the basal part of the epicotyl, was transported and metabolized mainly to [3H]GA8 in the apical 20 mm of the epicotyl. The conversion of [3H]GA1 to [3H]GA8 was dramatically reduced by both end-of-day FR treatments and LAB 198 999 applications. In addition, both treatments enhanced epicotyl elongation. It is proposed that the regulation of cowpea epicotyl growth by phytocrome is mediated, at least partially, by modifying GA1 degradation.  相似文献   

20.
In the temperate-zone woody species Salix pentandra elongation growth is regulated by the photoperiod. Long days sustain active growth, whereas short days induce cessation of apical growth, which is a prerequisite for winter hardening. It is shown that this is correlated to quantitative changes in levels of endogenous GA19 GA20, and GA1. Within two short days the amount of the active GA1 and its immediate precursor GA20, decreased markedly in young leaves us well as in stem tissue. Also, the amount of GA19, declined, but the decrease was delayed relative to that of GA1 and GA20. The ability of S. pentandra seedlings to respond to exogenous GA19, decreased with increasing numbers of short days. Observations that support the hypothesis that the level of GA1 in S. pentandra is regulated by the photoperiod in a quantitative mode with conversion of GA19, to GA20, being one target for control.
Different distribution of GAs in various plant parts was observed. The level of GA was higher in young leaves than in other plant parts, and the amount of GA19 was 5–10 times higher in stem tissue than in leaves and roots. The ratios of GA8 to GA1 and GA20, were higher in roots as compared with other parts, as rods contained very low levels of GA1 and GA20, but amounts of GA20 comparable with other parts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号