首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Non-small cell lung cancer (NSCLC) represents about 85% of all lung cancer cases. Lung cancer is the most frequent non-AIDS-defining malignancies in HIV-infected patients. The mechanism of the increased risk for lung cancer in HIV-1 patients is poorly understood. HIV-1 Nef protein has been suggested to be one of the key players in HIV-related lung disease. In here, we showed the involvement of Nef protein in cell modifications such as fibroblasts (IMR-90) and normal (BEAS-2B) or cancerous (A549) epithelial cells. We demonstrated that Nef protein reprograms initial stages of lung cancer (e.g. changes in the metabolism, improved cell survival and invasion, increase the angiogenesis factor VEGF). Additionally, we showed that Nef is provoking a global decrease of mature miRNA and a decrease of DICER1 and AGO expression in lung cells. MiRNAs play a crucial role in cell signaling and homeostasis, functioning as oncogenes or tumor suppressors, and their dysregulation can contribute to the tumorigenic process. These results showed that HIV-1 Nef protein is directly involved in preventing cell death and contributes to tumor progression.  相似文献   

2.
3.
The HIV-1 Nef-mediated downregulation of cell surface MHC-I molecules to the trans-Golgi network (TGN) enables HIV-1 to escape immune surveillance. However, the cellular pathway used by Nef to downregulate MHC-I is unknown. Here, we show that Nef and PACS-1 combine to usurp the ARF6 endocytic pathway by a PI3K-dependent process and downregulate cell surface MHC-I to the TGN. This mechanism requires the hierarchical actions of three Nef motifs-the acidic cluster 62EEEE(65), the SH3 domain binding site 72PXXP(75), and M(20)-in controlling PACS-1-dependent sorting to the TGN, ARF6 activation, and sequestering internalized MHC-I to the TGN, respectively. These data provide new insights into the cellular basis of HIV-1 immunoevasion.  相似文献   

4.
Persistent cross-linking of hen egg lysozyme (HEL)-specific B cell membrane Ig (mIg) in double transgenic mice that express soluble HEL as a self Ag (HEL-Ig mice) decreases B cell mIgM expression, responsiveness, and life span. Because in vitro treatment with IL-4 inhibits T cell apoptosis through a Stat6-independent mechanism, increases mIg expression, and suppresses activation-induced B cell death, we studied IL-4 effects on B cell mIg expression, survival, and Ab secretion in Stat6-sufficient and deficient HEL-Ig mice. IL-4 treatment nearly normalized B cell number and greatly increased the percentage of mature B cells in HEL-Ig mice, but failed to normalize mIgM expression or spontaneous LPS-induced IgM secretion. IL-4 effects on B cell survival and maturation were CD4(+) T cell independent, but Stat6 dependent, and did not involve receptor editing. IL-4 had to be present while B cells were generated to have a detectable effect on autoreactive B cell survival; however, the survival of B cells generated in the presence of IL-4 was substantially increased even after IL-4 was withdrawn. These observations suggest that: 1) activation-induced B cell death and anergy are independent processes; 2) B cells that survive to maturity develop increased resistance to Ag-induced deletion; and 3) IL-4 promotes B and T cell survival through different mechanisms.  相似文献   

5.
Accumulating evidence demonstrates that aldosterone can cause extra-cellular matrix (ECM) accumulation, in addition to regulating sodium and potassium homeostasis. Increased extra-cellular matrix production by renal glomerular mesangial cells has been suggested to be involved in pathogenesis of glomerular sclerosis. The present studies examine whether aldosterone is also produced in renal mesangial cells, and the effect of aldosterone on ECM accumulation in these cells. In cultured renal mesangial cells, aldosterone synthase (CYP11B2), mineralocorticoid receptor (MR), and 11beta-HSD2 mRNA expressions were detected by RT-PCR. The ability of renal mesangial cells to produce aldosterone was confirmed by directly detecting aldosterone in culture medium via radioimmunoassay. Real-time RT-PCR showed that the expression of CYP11B2 mRNA in mesangial cells was significantly enhanced by AngII (P<0.001) and by potassium (P<0.05). Exposure of the cultured mesangial cells to aldosterone significantly increased fibronectin production from 12.4+/-1.9 to 74.6+/-16.8ng/ml (P<0.05). The aldosterone induced fibronectin production was abolished by aldosterone receptor antagonist spironolactone. Aldosterone also increased the TGF-beta1 reporter luciferase activity from 0.8+/-0.1 to 1.7+/-0.1 (P<0.05). Immunoblot showed TGF-beta1 protein expression was increased following aldosterone treatment. Blocking TGF-beta1 signaling pathway by knocking down Smad2 significantly blunted the aldosterone induced fibronectin production. The present studies indicate that renal mesangial cell is a target of local aldosterone action, which promotes ECM protein fibronectin production via TGF-beta1/Smad2 signaling pathway.  相似文献   

6.
HIV-1 Nef disrupts antigen presentation early in the secretory pathway   总被引:4,自引:0,他引:4  
Human immunodeficiency virus, type 1 Nef disrupts viral antigen presentation and promotes viral immune evasion from cytotoxic T lymphocytes. There is evidence that Nef acts early in the secretory pathway to redirect major histocompatibility complex class I (MHC-I) from the trans-Golgi network to the endolysosomal pathway. However, a competing model suggests that Nef acts much later by accelerating MHC-I turnover at the cell surface. Here we demonstrate that Nef targets early forms of MHC-I molecules in the endoplasmic reticulum by preferentially binding hypophosphorylated cytoplasmic tails. The Nef-MHC-I complex migrates normally into the Golgi apparatus but subsequently fails to arrive at the cell surface and become phosphorylated. Cell type-specific differences in the rate of MHC-I transport through the secretory pathway correlate with responsiveness to Nef and co-precipitation of adaptor protein 1 with the Nef.MHC-I complex. We propose that the assembly of a Nef.MHC-I.adaptor protein 1 complex early in the secretory pathway is important for Nef activity.  相似文献   

7.
Apoptosis enhancement by the HIV-1 Nef protein   总被引:10,自引:0,他引:10  
The HIV-1 nef gene, essential for AIDS pathogenesis, encodes a 27-kDa protein (Nef) whose biochemical and biological functions are unclear. It has been suggested that Nef expression contributes to the T cell depletion observed during the disease by promoting their apoptosis. We report that in CD4(+) human lymphoblastoid cell lines transfected with the nef cDNA obtained from three different HIV-1 strains, expression of the Nef protein enhances and accelerates the response to four unrelated apoptotic agents (staurosporine, anisomycin, camptothecin, and etoposide) but not to an anti-Fas agonist Ab. Nef reduces the expression of the anti-apoptotic proteins Bcl-2 and Bcl-X(L) and induces a striking enhancement of apoptotic hallmarks, including mitochondrial depolarization, exposure of phosphatidylserine on the cell surface, activation of caspase-3, and cleavage of the caspase target poly(ADP-ribose) polymerase. Interestingly, the peptide Z-Val-Ala-DL-Asp-fluoromethylketone (a broad-spectrum caspase inhibitor) reduces, but does not abolish, phosphatidylserine exposure, suggesting that Nef also activates a caspase-independent apoptotic pathway. Surprisingly, Nef expression increases DNA degradation but without causing oligonucleosomal fragmentation. An increased apoptotic response and down-modulation of Bcl-2/Bcl-X(L) following Nef expression are observed also in NIH-3T3 fibroblasts. These data show that Nef enhances programmed cell death in different cell types by affecting multiple critical components of the apoptotic machinery independently from the Fas pathway.  相似文献   

8.
9.
To facilitate viral infection and spread, HIV-1 Nef disrupts the surface expression of the viral receptor (CD4) and molecules capable of presenting HIV antigens to the immune system (MHC-I). To accomplish this, Nef binds to the cytoplasmic tails of both molecules and then, by mechanisms that are not well understood, disrupts the trafficking of each molecule in different ways. Specifically, Nef promotes CD4 internalization after it has been transported to the cell surface, whereas Nef uses the clathrin adaptor, AP-1, to disrupt normal transport of MHC-I from the TGN to the cell surface. Despite these differences in initial intracellular trafficking, we demonstrate that MHC-I and CD4 are ultimately found in the same Rab7(+) vesicles and are both targeted for degradation via the activity of the Nef-interacting protein, beta-COP. Moreover, we demonstrate that Nef contains two separable beta-COP binding sites. One site, an arginine (RXR) motif in the N-terminal alpha helical domain of Nef, is necessary for maximal MHC-I degradation. The second site, composed of a di-acidic motif located in the C-terminal loop domain of Nef, is needed for efficient CD4 degradation. The requirement for redundant motifs with distinct roles supports a model in which Nef exists in multiple conformational states that allow access to different motifs, depending upon which cellular target is bound by Nef.  相似文献   

10.
We reported previously that CCR9 was neuroprotective in the mouse hippocampal neurons. This study was aimed to investigate if thymus-expressed chemokine (TECK)/CCL25 could promote survival of PC12 cells though its receptor CCR9. pEGFP-N1/CCR9 recombinant was constructed and transfected into PC12 cells. Along with this, 50 nM NGF was used to induce PC12 cells to differentiate into sympathetic-like neurons. We show here that under serum-free conditions and within a concentration range (50-200 nM), TECK rescued pEGFP-N1/CCR9 transfected PC12 cells from undergoing apoptosis in serum-free medium; however, it did not exert a similar effect on the cells in the control. On the other hand, the PC12 cells succumbed to a higher concentration of TECK (≥ 300 nM). Bim expression was up-regulated in PC12 cells cultured in serum-free medium in the absence of factors or with anti-TECK+TECK; however, it was not up-regulated in TECK-treated PC12 cells. p-Akt was detected at 15 min which lasted for at least 60 min when PC12 cells were cultured in serum-free medium with TECK. Additionally, it was shown that such an effect was effectively blocked by PI3K inhibitor, Wortmannin. These data suggest that TECK promotes survival of serum-deprived PC12 cells through its receptor, CCR9, most likely via the PI3K/Akt signaling pathway.  相似文献   

11.
St Gelais C  Coleman CM  Wang JH  Wu L 《PloS one》2012,7(3):e34521
HIV-1 Nef enhances dendritic cell (DC)-mediated viral transmission to CD4(+) T cells, but the underlying mechanism is not fully understood. It is also unknown whether HIV-1 infected DCs play a role in activating CD4(+) T cells and enhancing DC-mediated viral transmission. Here we investigated the role of HIV-1 Nef in DC-mediated viral transmission and HIV-1 infection of primary CD4(+) T cells using wild-type HIV-1 and Nef-mutated viruses. We show that HIV-1 Nef facilitated DC-mediated viral transmission to activated CD4(+) T cells. HIV-1 expressing wild-type Nef enhanced the activation and proliferation of primary resting CD4(+) T cells. However, when co-cultured with HIV-1-infected autologous DCs, there was no significant trend for infection- or Nef-dependent proliferation of resting CD4(+) T cells. Our results suggest an important role of Nef in DC-mediated transmission of HIV-1 to activated CD4(+) T cells and in the activation and proliferation of resting CD4(+) T cells, which likely contribute to viral pathogenesis.  相似文献   

12.
13.
HIV-1 Nef protein down-regulates several cell surface receptors through its interference with the cell sorting and trafficking machinery. Here we demonstrate for the first time the ability of Nef to down-regulate cell surface expression of the negative immune modulator CTLA-4. Down-regulation of CTLA-4 required the Nef motifs DD175, EE155 and LL165, all known to be involved in vesicle trafficking. Disruption of the lysosomal functions by pH-neutralizing agents prevented CTLA-4 down-regulation by Nef, demonstrating the implication of the endosomal/lysosomal compartments in this process. Confocal microscopy experiments visualized the co-localization between Nef and CTLA-4 in the early and recycling endosomes but not at the cell surface. Overall, our results provide a novel mechanism by which HIV-1 Nef interferes with the surface expression of the negative regulator of T cell activation CTLA-4. Down-regulation of CTLA-4 may contribute to the mechanisms by which HIV-1 sustains T cell activation, a critical step in viral replication and dissemination.  相似文献   

14.
15.
The Nef proteins of simian and human immunodeficiency viruses are known to directly bind and downregulate the CD4 receptor of infected cells. Recent results suggest that residues forming an alpha-helix N-cap in the CD4 cytoplasmic domain play a role in binding of CD4 to human immunodeficiency virus type 1 Nef protein. We determined the dissociation constants between Nef and several CD4 peptides that contain or do not contain the respective alpha-helix N-cap. Further, we compared helical secondary structure content of these CD4 peptide variants by circular dichroism spectroscopy. We conclude that presence of an alpha-helix in CD4 cytoplasmic domain increases CD4 affinity to Nef. In addition, the amino acid sequence of residues forming the helix N-cap influences CD4 affinity to Nef, too. Finally, the structural changes induced in Nef and CD4 upon binding to each other are investigated.  相似文献   

16.
Tangsinmankong N  Day NK  Good RA  Haraguchi S 《Cytokine》2000,12(10):1506-1511
IL-10 plays a pivotal role in the pathogenesis of several diseases and is elevated in sera of HIV-infected patients. Recently, we demonstrated that HIV Nef induces IL-10 mRNA expression as well as IL-10 production using PBMCs, H9 or U937 cells. This induction of IL-10 is inhibited by a calmodulin antagonist, W-7. In the present study, T or B lymphocytes or monocytes were isolated from PBMCs of healthy HIV-negative donors. Production of IL-10 and mRNA gene expression were analyzed on each isolated cell population after treatment with Nef or SEA for 3-24 h. The results show that Nef induces IL-10 production as well as mRNA expression significantly using monocytes but not with T or B lymphocytes. By contrast, SEA induced IL-10 production as well as mRNA expression using T lymphocytes but not with monocytes or B lymphocytes.  相似文献   

17.
Treatment of 26L cells, a subclone obtained from U937 cells, with TNF-alpha or DNA-damaging agents such as teniposide (VM26) and camptothecin (CPT) induced morphologically and biochemically typical apoptotic changes, including the activation of procaspase-3. The cells persistently infected with HIV-1 (26L/HIV), however, showed a marked resistance to VM26 and CPT, whereas they hardly lost the sensitivity to TNF-alpha. TNF-alpha-induced apoptosis of 26L/HIV cells proceeded without the increase in caspase-3 activity, indicating that signaling for apoptosis in the infected cells proceeded through an alternative caspase-3-independent pathway which could respond to TNF-alpha but not to VM26 and CPT. The evidence that p-toluenesulfonyl-l-lysine chloromethyl ketone (a trypsin-like serine protease inhibitor) blocked VM26- and CPT-induced apoptotic changes but not TNF-alpha-induced apoptosis also supported the existence of the alternative TNF-alpha-inducible pathway. The results also suggest that a TLCK-sensitive protease is involved upstream of the procaspase-3 activation process and that the protease is essential for the progress of VM26- and CPT-induced apoptosis. The similar effect of HIV-1-productive infection on the apoptosis induced by the DNA-damaging agents was also confirmed by utilizing U1 cells, which are latently HIV-1-infected U937 cells. The cells became resistant to these agents after induction of the viral production by pretreatment with PMA. These results suggest that persistent HIV-1 infection blocks an apoptotic pathway triggered by DNA damaging agents through the inhibition of the procaspase-3 activation process.  相似文献   

18.
The Ras-related GTPase (Ral) is converted to the GTP-bound form by Ral guanine nucleotide dissociation stimulator (RalGDS), a putative effector protein of Ras. Recently, it was proven that Ral regulates c-Src activity and subsequent phosphorylation of its substrate, STAT3. Here, we show that STAT3 inversely regulates activation of Ral through induction of expression of RalGDS. To identify new leukemia inhibitory factor-induced genes, we have performed representational difference analysis using M1 mouse myeloid leukemia cells and cloned RalGDS. The expression of RalGDS and subsequent activation of RalA were clearly suppressed by a dominant negative form of STAT3 and a JAK inhibitor, JAB/SOCS1/SSI-1, indicating that RalGDS/RalA signaling requires the activation of the JAK/STAT3 pathway. An experiment using a Ras inhibitor demonstrated that full activation of RalA also requires activation of Ras. These results suggest a novel cross-talk between JAK/STAT3 and the Ras/RalGDS/Ral signaling pathways through gp130.  相似文献   

19.
Viruses often exploit autophagy, a common cellular process of degradation of damaged proteins, organelles, and pathogens, to avoid destruction. HIV-1 dysregulates this process in several cell types by means of Nef protein. Nef is a small HIV-1 protein which is expressed abundantly in astrocytes of HIV-1-infected brains and has been suggested to have a role in the pathogenesis of HIV-Associated Neurocognitive Disorders (HAND). In order to explore its effect in the CNS with respect to autophagy, HIV-1 Nef was expressed in primary human fetal astrocytes (PHFA) using an adenovirus vector (Ad-Nef). We observed that Nef expression triggered the accumulation of autophagy markers, ATG8/LC3 and p62 (SQSMT1). Similar results were obtained with Bafilomycin A1, an autophagy inhibitor which blocks the fusion of autophagosome to lysosome. Furthermore co-expression of tandem LC3 vector (mRFP-EGFP-LC3) and Ad-Nef in these cells produced mainly yellow puncta (mRFP+, EGFP+) strongly suggesting that autophagosome fusion to lysosome is blocked in PHFA cells in the presence of Nef. Together these data indicate that HIV-1 Nef mimics Bafilomycin A1 and blocks the last step of autophagy thereby helping HIV-1 virus to avoid autophagic degradation in human astrocytes.  相似文献   

20.

Background

The Nef protein can be detected in plasma of HIV-1-infected patients and plays a role in the pathogenesis of HIV-1. Nef produced during the early stages of infection is fundamental in creating the ideal environment for viral replication, e.g. by reducing the ability of infected cells to induce an immune response.

Aim

Based on previous experience showing that both Tat and gp41 of HIV-1 are potent chemotactic factors for basophils and mast cells, and gp120 is a powerful stimulus for the release of histamine and cytokines (IL-4 and IL-13) from basophils, in this study we aimed to verify if the HIV Nef protein can exert some effects on basophils and mast cells purified from healthy volunteers through the interaction with the CXCL12 receptor, CXCR4.

Methods

Basophils purified from peripheral blood cells of 30 healthy volunteers and mast cells obtained from lung tissue of ten healthy volunteers were tested by flow cytometric analysis, chemotaxis and chemokine production by ELISA assays.

Results

Nef is a potent chemoattractant for basophils and lung mast cells obtained from healthy, HIV-1 and HIV-2 seronegative individuals. Incubation of basophils and mast cells with Nef induces the release of chemokines (CXCL8/IL-8 and CCL3/MIP-1α). The chemotactic activity of Nef on basophils and mast cells is mediated by the interaction with CXCR4 receptors, being blocked by preincubation of FcεRI+ cells with an anti-CXCR4 Ab. Stimulation with Nef or CXCL12/SDF-1α, a CXCR4 ligand, desensitizes basophils to a subsequent challenge with an autologous or heterologous stimulus.

Conclusions

These results indicate that Nef, a HIV-1-encoded α-chemokine homolog protein, plays a direct role in basophils and mast cell recruitment and activation at sites of HIV-1 replication, by promoting directional migration of human FcεRI+ cells and the release of chemokines from these cells. Together with our previous results, these data suggest that FcεRI+ cells contribute to the dysregulation of the immune system in HIV-1 infection.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号