首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Rhizobium leguminosarum biovar viciae nodulation protein NodO is partially homologous to haemolysin of Escherichia coli and, like haemolysin, is secreted into the growth medium. The NodO protein can be secreted by a strain of E. coli carrying the cloned nodO gene plus the haemolysin secretion genes hlyBD, in a process that also requires the outer membrane protein encoded by tolC. The related protease secretion genes, prtDEF, from Erwinia chrysanthemi also enable E. coli to secrete NodO. The Rhizobium genes encoding the proteins required for NodO secretion are unlinked to nodO and are unlike other nod genes, since they do not require flavonoids or NodO for their expression. Although proteins similar to NodO were not found in rhizobia other than R. leguminosarum bv. viciae, several rhizobia and an Agrobacterium strain containing the cloned nodO gene were found to have the ability to secrete NodO. These observations indicate that a wide range of the Rhizobiaceae have a protein secretion mechanism analogous to that which secretes haemolysin and related toxins and proteases in the ENterobacteriaceae.  相似文献   

2.
We cloned the gene encoding a membrane-interactive protein of Borrelia burgdorferi by means of its haemolytic activity in Escherichia coli . The haemolytic activity was erythrocyte-species specific, with progressively decreasing activity for erythrocytes from horse, sheep, and rabbit, respectively. Genetic analysis of the haemolytic determinant revealed two borrelia haemolysin genes, blyA and blyB , that are part of a predicted four-gene operon which is present in multiple copies on the 30 kb circular plasmid(s) of B. burgdorferi B31. blyA encodes a predicted α-helical 7.4 kDa protein with a hydrophobic central region and a positively charged C-terminus, which is structurally homologous to a large group of pore-forming toxins with cytolytic activity. blyB encodes a soluble protein which stabilized BlyA and enhanced haemolytic activity. While the majority of BlyA in E. coli was membrane-associated, only soluble protein was haemolytically active. The haemolytic activity was shown to be highly protease sensitive, heat labile, independent of divalent cations, and extremely dependent on protein concentration, consistent with a requirement for oligomerization as the mechanism of action. BlyA was highly purified from E. coli in a single step utilizing Triton X-114 phase partitioning. Genetic analysis of blyA and blyB mutants indicated that the stability, membrane association, and activity of BlyA was dependent on subtle changes in its sequence and on the BlyB protein. The bly genes were found to be expressed at a very low level in cultured B. burgdorferi .  相似文献   

3.
4.
The gene encoding the c. 105 kD secreted haemolysin protein of the porcine pathogen Actinobacillus pleuropneumoniae serotype 1 has been isolated by screening a lambda gt11 expression library in Escherichia coli with antiserum raised against the wild-type protein. A derivative recombinant DNA pJFF702 expressed the hlylA haemolysin gene from the pUC19 lac promoter but the resulting haemolysin I protein remained within the E. coli cell and was haemolytically inactive. Export of the intracellular A. pleuropneumoniae prohaemolysin out into the medium was achieved by the presence in trans of the E. coli haemolysin secretion genes hlyB and hlyD, and high levels of intracellular haemolytic activity were attained similarly by the E. coli post-translational haemolysin activator gene, hlyC. Southern hybridization of A. pleuropneumoniae parental DNA nevertheless indicated only a low degree of nucleotide sequence identity to the haemolysin structural and secretion genes hlyA and hlyB of E. coli. The data show that despite substantial nucleotide sequence divergence the A. pleuropneumoniae serotype 1 haemolysin determinant is closely related to that which is dispersed throughout other Gram-negative human and animal pathogens.  相似文献   

5.
In this paper we show the construction of a plasmid pLG609 which carries the 3'-end of the haemolysin structural gene, hlyA under tac promoter control. Expression of pLG609 in an E. coli strain carrying the haemolysin export genes hlyB and hlyD led to the efficient secretion of the C-terminal, 23 kDa peptide of haemolysin. The discovery of a C-terminal topogenic sequence, which appears to be all that is required for secretion of the whole toxin, is so far quite unique in protein export.  相似文献   

6.
7.
The Serratia marcescens haemophore HasA is secreted by an ABC exporter comprising three envelope proteins. The ABC protein (ATP-binding cassette) HasD and the MFP protein (membrane fusion protein) HasE but not the outer membrane component have been isolated previously. In Escherichia coli , TolC, the outer membrane component of the haemolysin transporter, can form a hybrid exporter with HasD and HasE. This hybrid secretes HasA and the very similar metalloproteases from S. marcescens and Erwinia chrysanthemi . By analogy, the genuine exporter was predicted to secrete metalloproteases. The hasF gene was thus cloned from S. marcescens into an E. coli tolC mutant carrying hasD and hasE genes, by screening for a proteolytic phenotype on skimmed-milk plates. hasF encodes a protein sharing 74% identity with the E. coli TolC protein. Anti-TolC antibodies cross-reacted with a protein with an apparent molecular weight of 53 kDa in E. coli expressing hasF and in S. marcescens . hasF is unlinked to the has cluster and, unlike the has operon, is not iron regulated. hasF complements some of the tolC phenotypes, including drug- and detergent sensitivities and haemolysin secretion but not colicin E1 uptake. This suggests that the various functions of TolC could correspond to distinct domains on the protein.  相似文献   

8.
9.
Transposon mutagenesis was used to isolate two Escherichia coli mutants which express very large amounts of haemolysin when carrying the multicopy plasmid pANN202-312. E. coli strain Hha-2 was isolated by Mud1 mutagenesis, and strain Hha-3 by Tn5 mutagenesis. The transposon insertion was chromosomal in both mutants and could be demonstrated to be unrelated to the haemolytic region of the plasmid. The substantial increase in both extracellular and intracellular haemolysin production was dependent upon plasmid copy number and was drastically reduced when either mutant carried the low-copy-number haemolytic plasmid pHly152. In both mutants, the marked increase in extracellular production was dependent upon the specific haemolysin transport genes, hlyB and hlyD. The lack of either gene function resulted in no external haemolysin production. SDS-PAGE analysis showed no change in the pattern of outer-membrane proteins of the mutants, although changes (differing between the two mutants) were seen in their periplasmic proteins. The mutations of both strains (termed hha-2 and hha-3) were mapped at minute 10.5 of the E. coli chromosome. No relation to any known gene affecting gene regulation in E. coli could be found.  相似文献   

10.
Group B streptococci (GBS) express a β-haemolysin/cytolysin that contributes to disease pathogenesis. We report an independent discovery and extension of a genetic locus encoding the GBS β-haemolysin/cytolysin activity. A plasmid library of GBS chromosomal DNA was cloned into Escherichia coli , and a transformant was identified as β-haemolytic on blood agar. The purified plasmid contained a 4046 bp insert of GBS DNA encoding two complete open reading frames (ORFs). A partial upstream ORF ( cyl B) and the first complete ORF ( cyl E) represent the 3' end of a newly reported genetic locus ( cyl ) required for GBS haemolysin/cytolysin activity . ORF cyl E is predicted to encode a 78.3 kDa protein without GenBank homologies. The GBS DNA fragment also includes a previously unreported ORF, cyl F, with homology to bacterial aminomethyltransferases, and the 5' end of cyl H, with homology to 3-ketoacyl-ACP synthases. Southern analysis demonstrated that the cyl locus was conserved among GBS of all common serotypes. Targeted plasmid integrational mutagenesis was used to disrupt cyl B, cyl E, cyl F and cyl H in three wild-type GBS strains representing serotypes Ia, III and V. Targeted integrations in cyl B, cyl F and cyl H retaining wild-type haemolytic activity were identified in all strains. In contrast, targeted integrations in cyl E were invariably non-haemolytic and non-cytolytic, a finding confirmed by in frame allelic exchange of the cyl E gene. The haemolytic/cytolytic activity of the cyl E allelic exchange mutants could be restored by reintroduction of cyl E on a plasmid vector. Inducible expression of cyl E, cyl F and cyl EF demonstrated that it is CylE that confers haemolytic activity in E. coli . We conclude that cyl E probably represents the structural gene for the GBS haemolysin/cytolysin, a novel bacterial toxin.  相似文献   

11.
12.
Abstract Actinobacillus pleuropneumoniae serotype 2 secretes type II haemolysin and pleurotoxin activities. Here, the genes for type II haemolysin were cloned in Escherichia coli , but type II haemolysin antigen and haemolysin activity were only detected intracellularly and not exported to culture supernatant. It has been reported that the genes for type II haemolysin are not linked to functional secretion genes, while those for pleurotoxin are. In this report the means of secretion of type II haemolysis was examined by constructing a hybrid plasmid carrying the genes required for type II haemolysin expression, together with determinants which allow secretion of pleurotoxin and are linked to the pleurotoxin toxin genes. These genes facilitated the export of type II haemolysin from E. coli , and may perform this function in A. pleuropneumoniae .  相似文献   

13.
The genes involved in the biosynthetic pathway of ectoine (2-methyl-1,4,5,6-tetrahydropyrimidine-4-carboxylic acid) from Bacillus halodurans were cloned as an operon and expressed in E. coli. Analysis of the deduced ectoine biosynthesis cluster amino acid sequence revealed that the ectoine operon contain 2,389 bp, encoded by three genes; ectA, ectB and ectC that encode proteins of 189, 427 and 129 amino acids with deduced molecular masses of 21,048, 47,120 and 14,797 Da respectively. Extracts of induced cells showed two bands at 41 kDa and 17 kDa, possibly corresponding to the products of the later two genes. However the expression of ectA gene could not be ascertained by SDS-PAGE. The activity of the ectA protein was confirmed by an acylation assay. The transgenic E. coli accumulated upto 4.6 mg ectoine/l culture. This is the first report of an engineered E. coli strain carrying the ectoine genes of the alkaliphilic bacterium, B. halodurans.  相似文献   

14.
We previously identified a heat- and protease-labile haemolytic activity expressed by Haemophilus ducreyi . In order to characterize the haemolysin at the molecular level, genomic DNA from H. ducreyi was probed with haemolysin genes from other Gram-negative organisms. The haemolysin genes of Proteus mirabilis hybridized to H. ducreyi DNA suggesting that the haemolysin of H. ducreyi is related to the Proteus/Serratia pore-forming family of haemolysins. Tn 916 mutagenesis was employed to isolate haemolysin-deficient mutants. Approximately 5000 Tn 916 transposon mutants were screened for the loss of haemolytic activity and two mutants were identified. One mutant, designated 35 000-1, was further characterized. Sequences flanking the Tn 916 element in strain 35 000-1 were employed to identify clones from a λDASHII library of H. ducreyi strain 35 000 DNA. A 13 kb insert from one lambda clone was selected for further study. This 13 kb fragment was able to both confer haemolytic activity to Escherichia coli and complement the haemolysin deficiency in strain 35 000-1. The haemolysin gene cluster was cloned from this 13 kb insert and two genes, designated hhdA and hhdB , were identified. The derived amino acid sequence of these genes demonstrated homology to the haemolysin and activation/secretion proteins of P. mirabilis and Serratia marcescens .  相似文献   

15.
This article describes the reconstitution in Escherichia coli of a heterologous protein secretion system comprising a gene for an extracellular protein together with its cognate secretion genes. The protein concerned, pullulanase, is a secreted lipoprotein of the Gram-negative bacterium Klebsiella pneumoniae. It is initially localized to the cell surface before being specifically released into the medium. E. coli carrying the cloned pullulanase structural gene (pulA) produces pullulanase but does not expose or secrete it. Secretion genes were cloned together with pulA in an 18.8 kbp fragment of K. pneumoniae chromosomal DNA. E. coli carrying this fragment exhibited maltose-inducible production, exposition and specific secretion of pullulanase. Transposon mutagenesis showed that the secretion genes are located on both sides of pulA. Secretion genes located 5' to pulA were transcribed in the opposite orientation to pulA under the control of the previously identified, malT-regulated malX promoter. Thus these secretion genes are part of the maltose regulon and are therefore co-expressed with pulA. Transposon mutagenesis suggested that secretion genes located 3' of pulA are not co-transcribed with pulA, raising the possibility that some secretion functions are not maltose regulated.  相似文献   

16.
The calmodulin-sensitive adenylate cyclase of Bordetella pertussis, a 45 kd secreted protein, is synthesized as a 1706 amino acid precursor. We have shown that this precursor is a bifunctional protein, carrying both adenylate cyclase and haemolytic activities. The 1250 carboxy-terminal amino acids of the precursor showed 25% similarity with Escherichia coli alpha-haemolysin (HlyA) and 22% similarity with Pasteurella haemolytica leucotoxin. Three open reading frames were identified downstream from the cyaA gene: cyaB, cyaD and cyaE, coding for polypeptides of 712, 440 and 474 amino acid residues, respectively. As for E. coli alpha-haemolysin, secretion of B.pertussis adenylate cyclase and haemolysin requires the expression of additional genes. The gene products of cyaB and cyaD are highly similar to HlyB and HlyD, known to be necessary for the transport of HlyA across the cell envelope and for its release into the external medium. Complementation and functional studies indicate that the B.pertussis adenylate cyclase-haemolysin bifunctional protein is secreted by a mechanism similar to that described for E.coli alpha-haemolysin, requiring, in addition to the cyaB and cyaD gene products, the presence of a third gene product specified by the cyaE gene.  相似文献   

17.
18.
Lysogeny has previously been described in the entomopathogenic bacteria of the genus Xenorhabdus. Screening of a X. nematophila prophage DNA library on blood agar resulted in the identification of a 5.7-kb locus that caused a haemolytic phenotype when cloned in Escherichia coli, but not in the E. coli sheA null mutant, lacking the SheA cryptic haemolysin. This locus exhibited similarity to lysis genes from lambdoid phages. In particular, it encoded a functional holin able to complement a lambda Sam7 mutant. It is the second time that a locus encoding a functional holin is shown to reveal the SheA haemolytic phenotype in E. coli. The possible role of the holin in extracellular release of SheA is discussed.  相似文献   

19.
20.
Abstract The determinants for a haemolysin from an extraintestinal isolate of Citrobacter freundii have been cloned and expressed in both Escherichia coli K12 and phylogenetically related bacteria. Compared with E. coli , where the haemolytic determinants are encoded in 7.5 kb, the hemolysin determinants of C. freundii are located on a 2.5-kb Hin dIII fragment in the recombinant plasmid PJP71. Chicken embryo tests indicate that this haemolysin does contribute to the pathogenicity of C. freundii .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号