首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Localized bleaching (a discrete white area on the coral) was observed in one of the main framework-building corals in Hawaii, Porites compressa. This study aimed to determine the degree of virulence of the lesion. We investigated the whole-colony effects by following disease progression through time and examining the effect of localized bleaching on coral fecundity. After two months, 35 of 42 (83.3%) individually tagged colonies affected by localized bleaching showed tissue loss and partial colony mortality. Histological slides of healthy P. compressa and samples from colonies showing signs of localized bleaching were compared showing that affected colonies had a significant reduction (almost 50%) in gamete development, egg numbers, and egg size in the affected tissue. The observed localized bleaching results in both partial colony mortality and a reduced number of gametes and was termed Porites Bleaching with Tissue Loss (PBTL).  相似文献   

2.
Reports of coral diseases are increasing and may result from human land use and climate change conditions such as increased water temperature, coral bleaching, runoff from land, and changes in the ecology of heavily fished reefs. We examined a stable coral syndrome or a growth anomaly [ Porite growth anomaly (PGA)] (skeletal tissue anomaly, hyperplasia, or 'tumor') that was present in 0–15% of massive Porites colonies in 12 Kenyan reef lagoons. At the level of the calice morphology, this growth anomaly showed larger calices with less distance between calices and some calices with higher than normal numbers of septa, which indicate the influence of microboring organisms. Scanning electron micrographs of affected corals revealed a high abundance of fungal hyphae, a potential microboring pathogenic agent. To test the hypothesis that the PGA covaries with environmental variables, we evaluated its prevalence in relationship to 16 parameters of water quality, temperature, intensity of bleaching, benthic composition, and management at the end of the 2005 warm season. Stepwise regression models found eight environmental variables significantly associated with the frequency of the PGA, and the site's bleaching intensity was the most strongly associated variable. When bleaching intensity was removed from the dataset, the concentration of phosphorus was the one significant and positively associated variable, which suggest that the other significant environmental variables were associated with bleaching and not the growth anomalies. Our hypothetical model of causation is that the patchy loss of symbionts, often associated with bleaching, reduces calcification, increases susceptibility to pathogens, and allows endolithic fungi to perforate the skeleton creating a porous and anomalous growth of the skeleton. Consequently, we suggest that the frequency of skeletal growth anomalies is expected to increase with the frequency of coral bleaching.  相似文献   

3.

Background

Coral reefs worldwide are in decline. Much of the mortality can be attributed to coral bleaching (loss of the coral''s intracellular photosynthetic algal symbiont) associated with global warming. How corals will respond to increasing oceanic temperatures has been an area of extensive study and debate. Recovery after a bleaching event is dependent on regaining symbionts, but the source of repopulating symbionts is poorly understood. Possibilities include recovery from the proliferation of endogenous symbionts or recovery by uptake of exogenous stress-tolerant symbionts.

Methodology/Principal Findings

To test one of these possibilities, the ability of corals to acquire exogenous symbionts, bleached colonies of Porites divaricata were exposed to symbiont types not normally found within this coral and symbiont acquisition was monitored. After three weeks exposure to exogenous symbionts, these novel symbionts were detected in some of the recovering corals, providing the first experimental evidence that scleractinian corals are capable of temporarily acquiring symbionts from the water column after bleaching. However, the acquisition was transient, indicating that the new symbioses were unstable. Only those symbiont types present before bleaching were stable upon recovery, demonstrating that recovery was from the resident in situ symbiont populations.

Conclusions/Significance

These findings suggest that some corals do not have the ability to adjust to climate warming by acquiring and maintaining exogenous, more stress-tolerant symbionts. This has serious ramifications for the success of coral reefs and surrounding ecosystems and suggests that unless actions are taken to reverse it, climate change will lead to decreases in biodiversity and a loss of coral reefs.  相似文献   

4.
Roder  C.  Jantzen  C.  Schmidt  G. M.  Kattner  G.  Phongsuwan  N.  Richter  C. 《Coral reefs (Online)》2011,30(1):57-69
The metabolic plasticity of the two mounding coral species Porites lutea (Milne-Edwards and Haime, 1860) and Diploastrea heliopora (Lamarck, 1816) was investigated in the Similan Islands (Thailand), an offshore Andaman Sea island group subjected to large amplitude internal waves (LAIW). Nutrient concentrations were highly correlated with LAIW intensity and contributed to 3- and 10-fold higher symbiont densities in P. lutea and D. heliopora, respectively, along with elevated pigment concentrations, protein content, host tissue, and symbiont biomass. The comparison of LAIW-exposed and LAIW-sheltered island faces, and LAIW-intense and LAIW-weak years suggests a species-specific metabolic plasticity to LAIW, where D. heliopora benefits more from increased nutrient and organic matter availability than P. lutea. The ubiquitous LAIW in Southeast Asia and beyond may provide so far unexplored clues to coral acclimatization to disturbances on various scales, and hence, a potential key to coral resilience to climate change.  相似文献   

5.
Thermal stress causes the coral-dinoflagellate symbiosis to disassociate and the coral tissues to whiten. The onset and occurrence of this coral bleaching is primarily defined via the dinoflagellate responses. Here we demonstrate that thermal stress responses occur in the coral host tissues in the days before the onset of coral bleaching. The observed sequence of thermal responses includes reductions in thickness of coral tissue layers and apoptosis of the cells prior to reductions in symbiont density. In the days before the onset of coral bleaching the outer coral tissue layer (epithelium) thickness reduces and apoptosis occurs within the gastrodermis. Two days following this, coinciding with an initial reduction of symbiont density (by approximately 25%), gastrodermal thickness decreased and apoptosis of host cells was identified in the epithelium. This was eventually followed by large reduction in symbiont density (by approximately 50%) consistent with coral bleaching. Both pro-apoptotic and anti-apoptotic genes are identified in the reef building coral Acropora aspera, demonstrating the necessary pathways are present for fine control of host apoptosis. Our study shows that defining periods of host stress based on the responses defined by dinoflagellate symbiont underestimates the importance of early cellular events and the cellular complexity of coral host.  相似文献   

6.
While it is generally assumed that Indo-Pacific reefs are not widely affected by diseases, limited data suggest a number of diseases and syndromes that appear to differ from those currently under study in the Caribbean. This report presents the results of a baseline survey of coral diseases in 2 regions in the Philippines: the Central Visayas and the Lingayen Gulf. Mean prevalence for all diseases observed was 8.3 +/- 1.2% (mean +/- SE; n = 8 reefs), with Central Visayas reefs showing higher disease prevalence (11.6 +/- 2.8%; n = 4 reefs) than those of Lingayen Gulf (5.1 +/- 1.4%; n = 4 reefs). Five diseases and syndromes were described; 3 of these-Porites ulcerative white spot disease (PUWS) (prevalence = 8.96 +/- 2.2%), tumors (prevalence = 1.0 +/- 0.5%) and pigmentation response (prevalence = 0.5 +/- 0.2%)--occurred frequently in both regions and targeted the genus Porites. Correlation between disease prevalence and number of Porites colonies was fairly strong (r2 = 43.4), though not significant, and no correlation was seen between prevalence and either the amount or diversity of hard coral. Porites is a major reef-builder in the Indo-Pacific comprising 30% of hard coral colonies on our surveyed reefs, and is generally thought to be a hardy, long-lived genus. Diseases targeting this robust group present an as yet unquantified risk to Philippine reefs and could result in major changes in reef structure.  相似文献   

7.
Hartmann  A. C.  Carilli  J. E.  Norris  R. D.  Charles  C. D.  Deheyn  D. D. 《Coral reefs (Online)》2010,29(4):1079-1089
Within boulder forming corals, fixation of dissolved inorganic carbon is performed by symbiotic dinoflagellates within the coral tissue and, to a lesser extent, endolithic algae within the coral skeleton. Endolithic algae produce distinctive green bands in the coral skeleton, and their origin may be related to periods of coral bleaching due to complete loss of dinoflagellate symbionts or “paling” in which symbiont populations are patchily reduced in coral tissue. Stable carbon isotopes were analyzed in coral skeletons across a known bleaching event and 12 blooms of endolithic algae to determine whether either of these types of changes in photosynthesis had a clear isotopic signature. Stable carbon isotopes tended to be enriched in the coral skeleton during the initiation of endolith blooms, consistent with enhanced photosynthesis by endoliths. In contrast, there were no consistent δ13C patterns directly associated with bleaching, suggesting that there is no unique isotopic signature of bleaching. On the other hand, isotopic values after bleaching were lighter 92% of the time when compared to the bleaching interval. This marked drop in skeletal δ13C may reflect increased kinetic fractionation and slow symbiont recolonization for several years after bleaching.  相似文献   

8.
The scleractinian finger coral Porites compressa has been documented to develop raised growth anomalies of unknown origin, commonly referred to as “tumors”. These skeletal tissue anomalies (STAs) are circumscribed nodule-like areas of enlarged skeleton and tissue with fewer polyps and zooxanthellae than adjacent tissue. A field survey of the STA prevalence in Oahu, Kaneohe Bay, Hawaii, was complemented by laboratory analysis to reveal biochemical, histological and skeletal differences between anomalous and reference tissue. MutY, Hsp90a1, GRP75 and metallothionein, proteins known to be up-regulated in hyperplastic tissues, were over expressed in the STAs compared to adjacent normal-appearing and reference tissues. Histological analysis was further accompanied by elemental and micro-structural analyses of skeleton. Anomalous skeleton was of similar aragonite composition to adjacent skeleton but more porous as evidenced by an increased rate of vertical extension without thickening. Polyp structure was retained throughout the lesion, but abnormal polyps were hypertrophied, with increased mass of aboral tissue lining the skeleton, and thickened areas of skeletogenic calicoblastic epithelium along the basal floor. The latter were highly metabolically active and infiltrated with chromophore cells. These observations qualify the STAs as hyperplasia and are the first report in poritid corals of chromophore infiltration processes in active calicoblastic epithelium areas.  相似文献   

9.
Coral reefs are declining worldwide due to increased incidence of climate-induced coral bleaching, which will have widespread biodiversity and economic impacts. A simple method to measure the sub-bleaching level of heat-light stress experienced by corals would greatly inform reef management practices by making it possible to assess the distribution of bleaching risks among individual reef sites. Gene expression analysis based on quantitative PCR (qPCR) can be used as a diagnostic tool to determine coral condition in situ. We evaluated the expression of 13 candidate genes during heat-light stress in a common Caribbean coral Porites astreoides, and observed strong and consistent changes in gene expression in two independent experiments. Furthermore, we found that the apparent return to baseline expression levels during a recovery phase was rapid, despite visible signs of colony bleaching. We show that the response to acute heat-light stress in P. astreoides can be monitored by measuring the difference in expression of only two genes: Hsp16 and actin. We demonstrate that this assay discriminates between corals sampled from two field sites experiencing different temperatures. We also show that the assay is applicable to an Indo-Pacific congener, P. lobata, and therefore could potentially be used to diagnose acute heat-light stress on coral reefs worldwide.  相似文献   

10.
Analysis of field established xenogeneic interactions among five Porites species from Sesoko Island, Okinawa, revealed a transitive type of hierarchy as: P. rus >P. cylindrica >P. lobata >P. australiensis>P. lutea. Out of the 111 interspecific encounters studied, in only 5.4% reciprocal interactions were recorded, and in a single case, the opposite directionality of hierarchy was documented. Allogeneic encounters were also observed. A single major effector mechanism, an overgrowth (together with secondary outcomes such as the formation of small points of rejection, bleaching and pink color formation along a narrow peripheral belt of contacting tissues), was the only response in all 10 xenogeneic and 5 allogeneic combinations. In some massive colonies, a long contacting line of up to 50 cm was established. No sign for allelopathy, stand-off or rejection from a distance (i.e., by sweeper tentacles, sweeper polyps) was observed. Results are discussed with the accumulated data on Porites species from different reefs, worldwide, confirming that this genus is commonly lower in the hierarchy of xenogeneic interactions.  相似文献   

11.
The scleractinian coral Porites lutea, an important reef-building coral on western Indian Ocean reefs (WIO), is affected by a newly-reported white syndrome (WS) the Porites white patch syndrome (PWPS). Histopathology and culture-independent molecular techniques were used to characterise the microbial communities associated with this emerging disease. Microscopy showed extensive tissue fragmentation generally associated with ovoid basophilic bodies resembling bacterial aggregates. Results of 16S rRNA sequence analysis revealed a high variability between bacterial communities associated with PWPS-infected and healthy tissues in P. lutea, a pattern previously reported in other coral diseases such as black band disease (BBD), white band disease (WBD) and white plague diseases (WPD). Furthermore, substantial variations in bacterial communities were observed at the different sampling locations, suggesting that there is no strong bacterial association in Porites lutea on WIO reefs. Several sequences affiliated with potential pathogens belonging to the Vibrionaceae and Rhodobacteraceae were identified, mainly in PWPS-infected coral tissues. Among them, only two ribotypes affiliated to Shimia marina (NR043300.1) and Vibrio hepatarius (NR025575.1) were consistently found in diseased tissues from the three geographically distant sampling localities. The role of these bacterial species in PWPS needs to be tested experimentally.  相似文献   

12.
Porites tissue loss is a common disease of Porites compressa on Hawaiian reefs. Despite its prevalence, to date, the aetiological agent of the disease has not been found. The apparent lack of a microbial causative agent in the similar disease Porites bleaching with tissue loss, as well as increasing evidence of viral infections in scleractinian corals and Symbiodinium, led us to hypothesise that a virus may be responsible. Electron microscopy revealed the presence of numerous and varied virus-like particles (VLPs) in healthy and diseased P. compressa colonies. While overall virus numbers were similar in all samples, the abundance of a group of icosahedral VLPs differed significantly between healthy and diseased colonies. While not conclusive, these results suggest that viruses may play a role in this disease, and provide a basis for further studies.  相似文献   

13.
Mass coral bleaching events caused by elevated seawater temperatures result in extensive coral loss throughout the tropics, and are projected to increase in frequency and severity. If bleaching becomes an annual event later in this century, more than 90% of coral reefs worldwide may be at risk of long‐term degradation. While corals can recover from single isolated bleaching and can acclimate to recurring bleaching events that are separated by multiple years, it is currently unknown if and how they will survive and possibly acclimatize to annual coral bleaching. Here, we demonstrate for the first time that annual coral bleaching can dramatically alter thermal tolerance in Caribbean corals. We found that high coral energy reserves and changes in the dominant algal endosymbiont type (Symbiodinium spp.) facilitated rapid acclimation in Porites divaricata, whereas low energy reserves and a lack of algal phenotypic plasticity significantly increased susceptibility in Porites astreoides to bleaching the following year. Phenotypic plasticity in the dominant endosymbiont type of Orbicella faveolata did not prevent repeat bleaching, but may have facilitated rapid recovery. Thus, coral holobiont response to an isolated single bleaching event is not an accurate predictor of its response to bleaching the following year. Rather, the cumulative impact of annual coral bleaching can turn some coral species ‘winners’ into ‘losers’, and can also facilitate acclimation and turn some coral species ‘losers’ into ‘winners’. Overall, these findings indicate that cumulative impact of annual coral bleaching could result in some species becoming increasingly susceptible to bleaching and face a long‐term decline, while phenotypically plastic coral species will acclimatize and persist. Thus, annual coral bleaching and recovery could contribute to the selective loss of coral diversity as well as the overall decline of coral reefs in the Caribbean.  相似文献   

14.
Acropora and Porites corals are important reef builders in the Indo-Pacific and Caribbean. Bacteria associated with mucus produced by Porites spp. and Acropora spp. from Caribbean (Punta Maroma, Mexico) and Indo-Pacific (Hoga and Sampela, Indonesia) reefs were determined. Analysis of pyrosequencing libraries showed that bacterial communities from Caribbean corals were significantly more diverse (H', 3.18 to 4.25) than their Indonesian counterparts (H', 2.54 to 3.25). Dominant taxa were Gammaproteobacteria, Alphaproteobacteria, Firmicutes, and Cyanobacteria, which varied in relative abundance between coral genera and region. Distinct coral host-specific communities were also found; for example, Clostridiales were dominant on Acropora spp. (at Hoga and the Mexican Caribbean) compared to Porites spp. and seawater. Within the Gammproteobacteria, Halomonas spp. dominated sequence libraries from Porites spp. (49%) and Acropora spp. (5.6%) from the Mexican Caribbean, compared to the corresponding Indonesian coral libraries (<2%). Interestingly, with the exception of Porites spp. from the Mexican Caribbean, there was also a ubiquity of Psychrobacter spp., which dominated Acropora and Porites libraries from Indonesia and Acropora libraries from the Caribbean. In conclusion, there was a dominance of Halomonas spp. (associated with Acropora and Porites [Mexican Caribbean]), Firmicutes (associated with Acropora [Mexican Caribbean] and with Acropora and Porites [Hoga]), and Cyanobacteria (associated with Acropora and Porites [Hoga] and Porites [Sampela]). This is also the first report describing geographically distinct Psychrobacter spp. associated with coral mucus. In addition, the predominance of Clostridiales associated with Acropora spp. provided additional evidence for coral host-specific microorganisms.  相似文献   

15.
White syndrome (WS) is currently the most prevalent disease of scleractinian corals in the Indo-Pacific region, with an ability to exist in both epizootic and enzootic states. Here, we present results of an examination of WS lesion dynamics and show that potentially associated traits of host morphology (i.e., branching vs. massive), lesion size, and tissue deposition rate influence disease severity and recovery. Lesion healing rate was positively correlated with initial lesion size in both morphologies, but the rate at which lesions healed differed between morphologies. New lesions in branching Porites cylindrica appeared less frequently, were smaller and healed more quickly, but were more abundant than in closely-related massive Porites sp(p). The positive association between lesion size and healing rate was partly explained by geometry; branching limited lesion maximum size, and larger lesion margins contained more polyps producing new tissue, resulting in faster healing. However, massive colonies deposited tissue more slowly than branching colonies, resulting in slower recovery and more persistent lesions. Corallite size and density did not differ between species and did not, therefore, influence healing rate. We demonstrated multiple modes of pathogen transmission, which may be influenced by the greater potential for pathogen entrainment in branching vs. massive morphologies. We suggest that attributes such as colony morphology and species-specific growth rates require consideration as we expand our understanding of disease dynamics in colonial organisms such as coral.  相似文献   

16.
Microbial-coral interactions are increasingly recognized as important for coral health and disease. Visualizing these interactions is important for understanding where, when, and how the coral animal and microbes interact. Porites compressa, preserved using Parducz fixative and examined by scanning electron microscopy, revealed a changing microbial landscape. The external cell layers of this coral were invariably clean of directly adhering microbes, unlike coral-associated mucus. In colonies with expanded polyps, secreted mucus rapidly dissipated, although blobs of new mucus were common; the coral epidermal cells expressed cilia, which are presumably used to clean the surface, and coral-associated microbes were present as flocs, possibly enmeshed in mucus. In colonies with permanently contracted polyps, the coral epidermis had lost cilia and a stable, multi-lamellar mucous sheet covered the surface of the animal. This sheet became heavily colonized by both prokaryotic and eukaryotic microbes, however these microbes did not penetrate the mucous sheet and the animal’s epidermal cell surfaces remained sterile. These observations show that relationships between this coral animal and associated microbes are highly dynamic.  相似文献   

17.
Porites corals are foundation species on Pacific reefs but a confused taxonomy hinders understanding of their ecosystem function and responses to climate change. Here, we show that what has been considered a single species in the eastern tropical Pacific, Porites lobata, includes a morphologically similar yet ecologically distinct species, Porites evermanni. While P. lobata reproduces mainly sexually, P. evermanni dominates in areas where triggerfish prey on bioeroding mussels living within the coral skeleton, thereby generating asexual coral fragments. These fragments proliferate in marginal habitat not colonized by P. lobata. The two Porites species also show a differential bleaching response despite hosting the same dominant symbiont subclade. Thus, hidden diversity within these reef-builders has until now obscured differences in trophic interactions, reproductive dynamics and bleaching susceptibility, indicative of differential responses when confronted with future climate change.  相似文献   

18.
Annual coral bleaching events due to increasing sea surface temperatures are predicted to occur globally by the mid-century and as early as 2025 in the Caribbean, and severely impact coral reefs. We hypothesize that heterotrophic carbon (C) in the form of zooplankton and dissolved organic carbon (DOC) is a significant source of C to bleached corals. Thus, the ability to utilize multiple pools of fixed carbon and/or increase the amount of fixed carbon acquired from one or more pools of fixed carbon (defined here as heterotrophic plasticity) could underlie coral acclimatization and persistence under future ocean-warming scenarios. Here, three species of Caribbean coral—Porites divaricata, P. astreoides, and Orbicella faveolata—were experimentally bleached for 2.5 weeks in two successive years and allowed to recover in the field. Zooplankton feeding was assessed after single and repeat bleaching, while DOC fluxes and the contribution of DOC to the total C budget were determined after single bleaching, 11 months on the reef, and repeat bleaching. Zooplankton was a large C source for P. astreoides, but only following single bleaching. DOC was a source of C for single-bleached corals and accounted for 11–36 % of daily metabolic demand (CHARDOC), but represented a net loss of C in repeat-bleached corals. In repeat-bleached corals, DOC loss exacerbated the negative C budgets in all three species. Thus, the capacity for heterotrophic plasticity in corals is compromised under annual bleaching, and heterotrophic uptake of DOC and zooplankton does not mitigate C budget deficits in annually bleached corals. Overall, these findings suggest that some Caribbean corals may be more susceptible to repeat bleaching than to single bleaching due to a lack of heterotrophic plasticity, and coral persistence under increasing bleaching frequency may ultimately depend on other factors such as energy reserves and symbiont shuffling.  相似文献   

19.
A thermal stress anomaly in 2005 caused mass coral bleaching at a number of north-east Caribbean reefs. The impact of the thermal stress event and subsequent White-plague disease type II on Porites porites and Colpophyllia natans was monitored using a time series of photographs from Tektite Reef, Virgin Islands National Park, St. John. Over 92% of the P. porites and 96% of the C. natans experienced extensive bleaching (>30% of colony bleached). During the study, 56% of P. porites and 42% of C. natans experienced whole-colony mortality within the sample plots. While all whole-colony mortality of P. porites was directly attributed to coral bleaching, the majority (82%) of the C. natans colonies that experienced total mortality initially showed signs of recovery from bleaching, before subsequently dying from White-plague disease type II.  相似文献   

20.
Ocean warming is a major threat for coral reefs causing widespread coral bleaching and mortality. Potential refugia are thus crucial for coral survival. Exposure to large-amplitude internal waves (LAIW) mitigated heat stress and ensured coral survival and recovery during and after an extreme heat anomaly. The physiological status of two common corals, Porites lutea and Pocillopora meandrina, was monitored in host and symbiont traits, in response to LAIW-exposure throughout the unprecedented 2010 heat anomaly in the Andaman Sea. LAIW-exposed corals of both species survived and recovered, while LAIW-sheltered corals suffered partial and total mortality in P. lutea and P. meandrina, respectively. LAIW are ubiquitous in the tropics and potentially generate coral refuge areas. As thermal stress to corals is expected to increase in a warming ocean, the mechanisms linking coral bleaching to ocean dynamics will be crucial to predict coral survival on a warming planet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号