首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
SHIP is a SH2 domain-containing inositol polyphosphatase that is selectively tyrosine phosphorylated and associated with the adapter protein Shc in B lymphocytes upon co-crosslinking surface immunoglobulin and FcγRIIB1. We previously observed that this stimulation condition is associated with a reduction in the interaction of Grb2 with phosphorylated Shc, an enhanced interaction of Shc with SHIP, and a block in the Ras signaling pathway. We proposed that the SH2 domain of SHIP competes with Grb2 in binding to phospho-Shc, resulting in a block in Ras signaling. To test this model, we examined the mode of SHIP–Shc interaction. Using recombinant Shc and SHIP interaction domains and purified Shc and SHIP phosphopeptides, we show that the interaction is bi-dentate such that the SH2 domain of SHIP recognizes phosphorylated Y317 and doubly-phosphorylated Y239/Y240 of Shc and the Shc PTB domain recognizes phosphorylated NPxpY motifs within SHIP. We observed no role for the Shc SH2 domain in the interaction. These findings are consistent with our earlier model that SHIP and Grb2 compete for binding to phospho-Shc and support the notion that, in addition to the hydrolysis of inositol phosphates and phospholipids, SHIP contributes to anti-proliferative biochemistry by blocking protein–protein interactions. J. Cell. Biochem. 67:32–42, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

2.
Binding of proteins with SH2 domains to tyrosine-phosphorylated signaling proteins is a key mechanism for transmission of biological signals within the cell. Characterization of dysregulated proteins in cell signaling pathways is important for the development of therapeutic approaches. The AKT pathway is a frequently upregulated pathway in most cancer cells and the SH2-containing inositol 5-phosphatase SHIP1 is a negative regulator of the AKT pathway. In this study we investigated different mutations of the conserved FLVR motif of the SH2 domain and putative phosphorylation sites of SHIP1 which are located in close proximity to its FLVR motif. We demonstrate that patient-derived SHIP1-FLVR motif mutations e.g. F28L, and L29F possess reduced protein expression and increased phospho-AKT-S473 levels in comparison to SHIP1 wildtype. The estimated half-life of SHIP1-F28L protein was reduced from 23.2 h to 0.89 h in TF-1 cells and from 4.7 h to 0.6 h in Jurkat cells. These data indicate that the phenylalanine residue at position 28 of SHIP1 is important for its stability. Replacement of F28 with other aromatic residues like tyrosine and tryptophan preserves protein stability while replacement with non-aromatic amino acids like leucine, isoleucine, valine or alanine severely affects the stability of SHIP1. In consequence, a SHIP1-mutant with an aromatic amino acid at position 28 i.e. F28W can rescue the inhibitory function of wild type SHIP1, whereas SHIP1-mutants with non-aromatic amino acids i.e. F28V do not inhibit cell growth anymore. A detailed structural analysis revealed that F28 forms hydrophobic surface contacts in particular with W5, I83, L97 and P100 which can be maintained by tyrosine and tryptophan residues, but not by non-aromatic residues at position 28. In line with this model of mutation-induced instability of SHIP1-F28L, treatment of cells with proteasomal inhibitor MG132 was able to rescue expression of SHIP1-F28L. In addition, mutation of putative phosphorylation sites S27 and S33 adjacent to the FLVR motif of SHIP1 have an influence on its protein stability. These results further support a functional role of SHIP1 as tumor suppressor protein and indicate a regulation of protein expression of SH2 domain containing proteins via the FLVR motif.  相似文献   

3.
v-Abl protein tyrosine kinase encoded by Abelson murine leukemia virus (Ab-MLV) transforms pre-B cells. Transformation requires the phosphatidylinositol 3-kinase (PI3K) pathway. This pathway is antagonized by SH2-containing inositol 5'-phosphatase (SHIP), raising the possibility that v-Abl modulates PI3K signaling through SHIP. Consistent with this, we show that v-Abl expression reduces levels of full-length p145 SHIP in a v-Abl kinase activity-dependent fashion. This event requires signals from the Abl SH2 domain but not the carboxyl terminus. Forced expression of full-length SHIP significantly reduces Ab-MLV pre-B-cell transformation. Therefore, reduction of SHIP protein by v-Abl is a critical component in Ab-MLV transformation.  相似文献   

4.
v-Crk, an oncogene product of avian sarcoma virus CT10, efficiently transforms chicken embryo fibroblasts (CEF). We have recently reported that constitutive activation of the phosphoinositide 3-kinase (PI3K)/AKT pathway plays a critical role in the v-Crk-induced transformation of CEF. In the present study we investigated the molecular mechanism by which v-Crk activates the PI3K/AKT pathway. First, we found that v-Crk promotes the association of the p85 regulatory subunit of PI3K with focal adhesion kinase (FAK) by inducing the phosphorylation of the Y397 residue in FAK. This FAK phosphorylation needs activation of the Src family tyrosine kinase(s) for which the v-Crk SH2 domain is responsible. v-Crk was unable to activate the PI3K/AKT pathway in FAK-null cells, indicating the functional importance of FAK. In addition, we found that H-Ras is also required for the activation of the PI3K/AKT pathway. The v-Crk-induced activation of AKT was greatly enhanced by the overexpression of H-Ras or its guanine nucleotide exchange factor mSOS, which binds to the v-Crk SH3 domain, whereas a dominant-negative mutant of H-Ras almost completely suppressed this activation. Furthermore, we showed that v-Crk stimulates the interaction of H-Ras with the Ras binding domain in the PI3K p110 catalytic subunit. Our data indicated that the v-Crk-induced activation of PI3K/AKT pathway was cooperatively achieved by two distinct interactions. One is the interaction of p85 with tyrosine-phosphorylated FAK promoted by the v-Crk SH2 domain, and another is the interaction of p110 with H-Ras dictated by the v-Crk SH3 domain.  相似文献   

5.
p97/Gab2 is a recently characterized member of a large family of scaffold proteins that play essential roles in signal transduction. Gab2 becomes tyrosine-phosphorylated in response to a variety of growth factors and forms multimolecular complexes with SH2 domain-containing signaling molecules such as the p85-regulatory subunit of the phosphoinositide-3-kinase (p85-PI3K), the tyrosine phosphatase SHP-2 and the adapter protein CrkL. To characterize the interactions between Gab2 and its SH2-containing binding partners, we designed a modified yeast two-hybrid system in which the Lyn tyrosine kinase is expressed in a regulated manner in yeast. Using this assay, we demonstrated that p97/Gab2 specifically interacts with the SH2 domains of PI3K, SHP-2 and CrkL. Interaction with p85-PI3K is mediated by tyrosine residues Y452, Y476 and Y584 of Gab2, while interaction with SHP-2 depends exclusively on tyrosine Y614. CrkL interaction is mediated by its SH2 domain recognizing Y266 and Y293, despite the latter being in a non-consensus (YTFK) environment.  相似文献   

6.
7.
In 3T3-L1 and human preadipocytes, insulin results in the isolated rise in phosphatidylinositol (PI)-3,4,5-P3, whereas PDGF produces PI(3,4)P2 in addition to PI(3,4,5)P3. SH2 domain-containing inositol 5-phosphatase 2 (SHIP2) converts PI(3,4,5)P3 into PI(3,4)P2. PDGF, but not insulin, stimulates SHIP2 tyrosine phosphorylation and its association with Shc in human and 3T3-L1 preadipocytes. We now demonstrate that SHIP2 tyrosine phosphorylation and association with Shc in PDGF-treated 3T3-L1 preadipocytes was reduced by bisindolylmaleimide I (BisI), an inhibitor of conventional/novel protein kinase C (PKC). However, the production of PI(3,4)P2 and PI(3,4,5)P3 by PDGF was unaffected by BisI. Activation of PKC by 12-O-tetradecanoylphorbol-13-acetate (TPA) was not sufficient to induce SHIP2 tyrosine phosphorylation. Furthermore, we identified threonine 958 (T958) as a novel PDGF-responsive SHIP2 phosphorylation site. Mutation of T958 to alanine reduced PDGF-stimulated SHIP2 tyrosine phosphorylation and association with Shc, but did not alter its anti-proliferative effect on preadipocytes. This study demonstrates that SHIP2 tyrosine phosphorylation and Shc association can be regulated by serine/threonine signaling pathways, either indirectly (via PKC), or directly (via T958). Interestingly, the anti-proliferative effect of SHIP2 T958A, as well as another SHIP2 mutant (Y986F, Y987F) that also displays defective tyrosine phosphorylation and Shc association, does not depend on these molecular events.  相似文献   

8.
The inositol 5-phosphatase SHIP1 acts as negative regulator of intracellular signaling in myeloid cells and is a tumor suppressor in myeloid leukemogenesis. After relocalization from the cytoplasm to the plasma membrane SHIP1 terminates PI3-kinase mediated signaling processes. Furthermore, SHIP1 is also found in distinct puncta in the cell nucleus and nuclear SHIP1 has a pro-proliferative function. Here we report the identification of five nuclear export signals (NESs) which regulate together with the two known nuclear localization signals (NLSs) the nucleocytoplasmic shuttling of SHIP1. Mutation of NLSs reduced the nuclear import and mutation of NESs decreased the nuclear export of SHIP1 in the acute myeloid leukemia (AML) cell line UKE-1. Interestingly, four SHIP1 mutants (K210R, N508D, V684E, Q1153L) derived from AML patients showed a nuclear accumulation after expression in UKE-1 cells. In addition, overexpression of the AML patient-derived mutation N508D caused an increased proliferation rate of UKE-1 cells in comparison to wild type SHIP1. Furthermore, we identified serine and tyrosine phosphorylation as a molecular mechanism for the regulation of nucleocytoplasmic shuttling of SHIP1 where tyrosine phosphorylation of distinct residues i.e. Y864, Y914, Y1021 reduces nuclear localization, whereas serine phosphorylation at S933 enhances nuclear localization of SHIP1.In summary, our data further implicate nuclear SHIP1 in cellular signaling and suggest that enhanced accumulation of SHIP1 mutants in the nucleus may be a contributory factor of abnormally high proliferation of AML cells.  相似文献   

9.
《Cellular signalling》2014,26(6):1193-1203
The SH2 containing inositol 5-phosphatase SHIP2 is a member of the mammalian phosphoinositide polyphosphate 5-phosphatase family. It is a multi-domain protein comprising a central catalytic domain, an SH2 domain at its N-terminus, proline rich sequences and SAM domain at its C-terminus. It can dephosphorylate both phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) and phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and can participate in multiple signaling events in response to growth factors such as EGF, FGF or PDGF. Human SHIP2 can be phosphorylated at two major tyrosine residues Tyr986 and Tyr1135. Here, we report two intracellular localizations of pSHIP2(Y1135): pSHIP2(Y1135)-ir localizes at focal adhesions in EGF-stimulated HeLa cells and at the mitotic spindle in HeLa, in GIST882 cells, a human model of gastrointestinal stromal tumors derived cells, and in human astrocytoma 1321N1 cells. pSHIP2(Y1135)-ir is maximal at metaphase. In N1 cells, evidence is provided that the SHIP2 pathway impacts the distribution of mitotic centrosomes, particularly ү-tubulin. Our data reinforce the concept that SHIP2 localization in intact cells is dependent on phosphorylation mechanisms on both Ser/Thr and Tyr residues, i.e. Y1135, in three cancer cell lines.  相似文献   

10.
SHIP1 is an SH2 domain containing inositol-5-phosphatase that appears to be a negative regulator of hematopoiesis. The tyrosine kinase oncogene BCR/ABL drastically reduces expression of SHIP1. The major effect of re-expressing SHIP1 in BCR/ABL-transformed cells is reduction of hypermotility. To investigate the potential signaling pathways involving SHIP1 in hematopoietic cells, we overexpressed SHIP1 in a murine BCR/ABL-transformed Ba/F3 cell line and identified SHIP1-associated proteins. SHIP1 was found to form a novel signaling complex with BCR/ABL that includes DOK1 (p62(DOK)), phosphatidylinositol 3-kinase (PI3K), and CRKL, each of which has been previously shown to regulate migration in diverse cell types. We found that DOK1 binds directly through its PTB domain to SHIP1. Direct interaction of SHIP1 with CRKL was mediated through the CRKL-SH2 domain. Co-precipitation experiments suggest that Tyr(917) and Tyr(1020) in SHIP1 are likely to mediate interactions with DOK1. In contrast to wild type SHIP1, expression of tyrosine mutant SHIP1 by transient transfection did not alter migration. PI3K was likely linked to this complex by CRKL. Thus, this complex may serve to generate a very specific set of phosphoinositol products, possibly involved in regulating migration. Overall, these data suggest that proteins that interact with SHIP1 through Tyr(917) and Tyr(1020), such as DOK1 and SHC, are likely to be involved in the regulation of SHIP1 dependent migration.  相似文献   

11.
The erythropoietin (Epo) receptor transduces its signals by activating physically associated tyrosine kinases, mainly Jak2 and Lyn, and thereby inducing tyrosine phosphorylation of various substrates including the Epo receptor (EpoR) itself. We previously demonstrated that, in Epo-stimulated cells, an adapter protein, CrkL, becomes tyrosine-phosphorylated, physically associates with Shc, SHP-2, and Cbl, and plays a role in activation of the Ras/Erk signaling pathway. Here, we demonstrate that Epo induces binding of CrkL to the tyrosine-phosphorylated EpoR and SHIP1 in 32D/EpoR-Wt cells overexpressing CrkL. In vitro binding studies showed that the CrkL SH2 domain directly mediates the EpoR binding, which was specifically inhibited by a synthetic phosphopeptide corresponding to the amino acid sequences at Tyr(460) in the cytoplasmic domain of EpoR. The CrkL SH2 domain was also required for tyrosine phosphorylation of CrkL in Epo-stimulated cells. Overexpression of Lyn induced constitutive phosphorylation of CrkL and activation of Erk, whereas that of a Lyn mutant lacking the tyrosine kinase domain attenuated the Epo-induced phosphorylation of CrkL and activation of Erk. Furthermore, Lyn, but not Jak2, phosphorylated CrkL on tyrosine in in vitro kinase assays. Together, the present study suggests that, upon Epo stimulation, CrkL is recruited to the EpoR through interaction between the CrkL SH2 domain and phosphorylated Tyr(460) in the EpoR cytoplasmic domain and undergoes tyrosine phosphorylation by receptor-associated Lyn to activate the downstream signaling pathway leading to the activation of Erk and Elk-1.  相似文献   

12.
The SH2 domain containing inositol 5-phosphatase 2 (SHIP2) belongs to the family of the mammalian inositol polyphosphate 5-phosphatases. The two closely related isoenzymes SHIP1 (or SHIP) and SHIP2 contain a N-terminal SH2 domain, a catalytic domain, potential PTB domain-binding sites (NPXY), and C-terminal proline-rich regions with consensus sites for SH3 domain interactions. In addition, SHIP2 contains a unique sterile alpha motif (SAM) domain that could be involved in SAM-SAM domain interactions with other proteins or receptors. SHIP2 also shows the presence of an ubiquitin interacting motif at the C-terminal end. SHIP2 is essentially a PI(3,4,5)P(3) 5-phosphatase that negatively controls PI(3,4,5)P(3) levels in intact cells and produce PI(3,4)P(2) . Depending on the cells and stimuli, PI(3,4)P(2) could accumulate at important levels and be a "second messenger" by its own. It could interact with a very large number of target proteins such as PKB or TAPP1 and 2 that control insulin sensitivity. In addition to its catalytic activity, SHIP2 is also a docking protein for a large number of proteins: Cytoskeletal, focal adhesion proteins, scaffold proteins, adaptors, protein phosphatases, and tyrosine kinase associated receptors. These interactions could play a role in the control of cell adhesion, migration, or endocytosis of some receptors. SHIP2 could be acting independently of its phosphatase activity being part of a protein network of some receptors, e.g., the EGF receptor or BCR/ABL. These non-catalytic properties associated to a PI phosphatase have also been reported for other enzymes of the metabolism of myo-inositol such as Ins(1,4,5)P(3) 3-kinases, inositol phosphate multikinase (IPMK), or PTEN.  相似文献   

13.
SH2-containing inositol 5'-phosphatase (SHIP) plays a negative regulatory role in hematopoietic cells. We have now cloned the rat SHIP isozyme (SHIP2) cDNA from skeletal muscle, which is one of the most important target tissue of insulin action. Rat SHIP2 cDNA encodes a 1183-amino-acid protein that is 45% identical with rat SHIP. Rat SHIP2 contains an amino-terminal SH2 domain, a central 5'-phosphoinositol phosphatase activity domain, and a phosphotyrosine binding (PTB) consensus sequence and a proline-rich region at the carboxyl tail. Specific antibodies to SHIP2 were raised and the function of SHIP2 was studied by stably overexpressing rat SHIP2 in Rat1 fibroblasts expressing human insulin receptors (HIRc). Endogenous SHIP2 underwent insulin-mediated tyrosine phosphorylation and phosphorylation was markedly increased when SHIP2 was overexpressed. Although overexpression of SHIP2 did not affect insulin-induced tyrosine phosphorylation of the insulin receptor beta-subunit and Shc, subsequent association of Shc with Grb2 was inhibited, possibly by competition between the SH2 domains of SHIP2 and Grb2 for the Shc phosphotyrosine. As a result, insulin-stimulated MAP kinase activation was reduced in SHIP2-overexpressing cells. Insulin-induced tyrosine phosphorylation of IRS-1, IRS-1 association with the p85 subunit of PI3-kinase, and PI3-kinase activation were not affected by overexpression of SHIP2. Interestingly, although both PtdIns-(3,4,5)P3 and PtdIns(3,4)P2 have been implicated in the regulation of Akt activity in vitro, overexpression of SHIP2 inhibited insulin-induced Akt activation, presumably by its 5'-inositol phosphatase activity. Furthermore, insulin-induced thymidine incorporation was decreased by overexpression of SHIP2. These results indicate that SHIP2 plays a negative regulatory role in insulin-induced mitogenesis, and regulation of the Shc. Grb2 complex and of the downstream products of PI3-kinase provides possible mechanisms of SHIP2 action in insulin signaling.  相似文献   

14.
In a previous study, we found that the SHIP2 protein became tyrosine phosphorylated and associated with the Shc adapter protein in response to the treatment of cells with growth factors and insulin (T. Habib, J. A. Hejna, R. E. Moses, and S. J. Decker, J. Biol. Chem. 273:18605-18609, 1998). We describe here a novel interaction between SHIP2 and the p130(Cas) adapter protein, a mediator of actin cytoskeleton organization. SHIP2 and p130(Cas) association was detected in anti-SHIP2 immunoprecipitates from several cell types. Reattachment of trypsinized cells stimulated tyrosine phosphorylation of SHIP2 and increased the formation of a complex containing SHIP2 and a faster-migrating tyrosine-phosphorylated form of p130(Cas). The faster-migrating form of p130(Cas) was no longer recognized by antibodies to the amino terminus of p130(Cas) and appeared to be generated through proteolysis. Interaction of the SHIP2 protein with the various forms of p130(Cas) was mediated primarily through the SH2 domain of SHIP2. Immunofluorescence studies indicated that SHIP2 localized to focal contacts and to lamellipodia. Increased adhesion was observed in HeLa cells transiently expressing exogenous WT-SHIP2. These effects were not seen with SHIP2 possessing a mutation in the SH2 domain (R47G). Transfection of a catalytic domain deletion mutant of SHIP2 (DeltaRV) inhibited cell spreading. Taken together, our studies suggest an important role for SHIP2 in adhesion and spreading.  相似文献   

15.
Coligation of FcgammaRIIb1 with the B cell receptor (BCR) or FcepsilonRI on mast cells inhibits B cell or mast cell activation. Activity of the inositol phosphatase SHIP is required for this negative signal. In vitro, SHIP catalyzes the conversion of the phosphoinositide 3-kinase (PI3K) product phosphatidylinositol 3,4, 5-trisphosphate (PIP3) into phosphatidylinositol 3,4-bisphosphate. Recent data demonstrate that coligation of FcgammaRIIb1 with BCR inhibits PIP3-dependent Btk (Bruton's tyrosine kinase) activation and the Btk-dependent generation of inositol trisphosphate that regulates sustained calcium influx. In this study, we provide evidence that coligation of FcgammaRIIb1 with BCR induces binding of PI3K to SHIP. This interaction is mediated by the binding of the SH2 domains of the p85 subunit of PI3K to a tyrosine-based motif in the C-terminal region of SHIP. Furthermore, the generation of phosphatidylinositol 3,4-bisphosphate was only partially reduced during coligation of BCR with FcgammaRIIb1 despite a drastic reduction in PIP3. In contrast to the complete inhibition of Tec kinase-dependent calcium signaling, activation of the serine/threonine kinase Akt was partially preserved during BCR and FcgammaRIIb1 coligation. The association of PI3K with SHIP may serve to activate PI3K and to regulate downstream events such as B cell activation-induced apoptosis.  相似文献   

16.
The SH2 domain-containing inositol polyphosphate 5-phosphatase (SHIP) is known to play an important role in the negative regulation by FcgammaRIIB of PI3K-dependent signaling cascades activated by the B cell antigen receptor (BCR) as well as several tyrosine-kinase coupled cytokine receptors. However, to date the role of SHIP in the regulation of PI3K-dependent signals elicited by G-protein-coupled receptors (GPCR) such as chemokine receptors has not been investigated. In this study, we report that ligation of the G-protein-coupled chemokine receptor CXCR4 by SDF-1/CXCL12 has no effect on the tyrosine phosphorylation of SHIP in the murine B cell lymphoma A20. However, co-ligation of the B cell antigen receptor and FcgammaRIIB inhibits the PI3K-dependent phosphorylation of PKB and ERK1/2 in response to CXCL12. We have also utilised a constitutively active membrane-localised SHIP mutant expressed in the Jurkat leukaemic T cell line (which do not normally express SHIP), in order to investigate the effect of this mutant on CXCL12 stimulated PI3K-dependent signaling events. Experiments have revealed that CXCL12-mediated PKB phosphorylation, chemotaxis and lipid accumulation are inhibited in the presence of this SHIP mutant. Thus, it appears that heterologous activation of SHIP by non-G-protein-coupled receptor-mediated routes can impinge on PI3K-dependent signaling pathways activated by independently ligated G-protein-coupled chemokine receptors.  相似文献   

17.
FcgammaRIIB are low-affinity receptors for IgG that contain an immunoreceptor tyrosine-based inhibition motif (ITIM) and inhibit immunoreceptor tyrosine-based activation motif (ITAM)-dependent cell activation. When coaggregated with ITAM-bearing receptors, FcgammaRIIB become tyrosyl-phosphorylated and recruit the Src homology 2 (SH2) domain-containing inositol 5'-phosphatases SHIP1 and SHIP2, which mediate inhibition. The FcgammaRIIB ITIM was proposed to be necessary and sufficient for recruiting SHIP1/2. We show here that a second tyrosine-containing motif in the intracytoplasmic domain of FcgammaRIIB is required for SHIP1/2 to be coprecipitated with the receptor. This motif functions as a docking site for the SH2 domain-containing adapters Grb2 and Grap. These adapters interact via their C-terminal SH3 domain with SHIP1/2 to form a stable receptor-phosphatase-adapter trimolecular complex. Both Grb2 and Grap are required for an optimal coprecipitation of SHIP with FcgammaRIIB, but one adapter is sufficient for the phosphatase to coprecipitate in a detectable manner with the receptors. In addition to facilitating the recruitment of SHIPs, the second tyrosine-based motif may confer upon FcgammaRIIB the properties of scaffold proteins capable of altering the composition and stability of the signaling complexes generated following receptor engagement.  相似文献   

18.
SIP (signaling inositol phosphatase) or SHIP (SH2-containing inositol phosphatase) is a recently identified SH2 domain-containing protein which has been implicated as an important signaling molecule. SIP/SHIP becomes tyrosine phosphorylated and binds the phosphotyrosine-binding domain of SHC in response to activation of hematopoietic cells. The signaling pathways and biological responses that may be regulated by SIP have not been demonstrated. SIP is a phosphatidylinositol- and inositol-polyphosphate 5-phosphatase with specificity in vitro for substrates phosphorylated at the 3' position. Phosphatidylinositol 3'-kinase (PI 3-kinase) is an enzyme which is involved in mitogenic signaling and whose phosphorylated lipid products are predicted to be substrates for SIP. We tested the hypothesis that SIP can modulate signaling by PI 3-kinase in vivo by injecting SIP cRNAs into Xenopus oocytes. SIP inhibited germinal vesicle breakdown (GVBD) induced by expression of a constitutively activated form of PI 3-kinase (p110*) and blocked GVBD induced by insulin. SIP had no effect on progesterone-induced GVBD. Catalytically inactive SIP had little effect on insulin- or PI 3-kinase-induced GVBD. Expression of SIP, but not catalytically inactive SIP, also blocked insulin-induced mitogen-activated protein kinase phosphorylation in oocytes. SIP specifically and markedly reduced the level of phosphatidylinositol (3,4,5) triphosphate [PtdIns(3,4,5)P3] generated in oocytes in response to insulin. These results demonstrate that a member of the phosphatidylinositol polyphosphate 5-phosphatase family can inhibit signaling in vivo. Further, our data suggest that the generation of PtdIns(3,4,5)P3 by PI 3-kinase is necessary for insulin-induced GVBD in Xenopus oocytes.  相似文献   

19.
We have investigated the role of the SH3 and BH domains in the function of the p85α adapter/regulatory subunit of PI 3-kinase. In these studies epitope-tagged adapter subunit constructs containing wild-type p85α, p85α lacking the SH3 domain (ΔSH3-p85α), or p85α lacking the Rac-GAP/BCR homology (BH) domain (ΔBH-p85α) were coexpressed with either the p110α or p110β PI 3-kinase catalytic subunit in HEK293 cells. The deletion of either BH or SH3 domains had no effect on the intrinsic activity of the PI 3-kinase heterodimers. However, the ability of activated Rac to stimulate PI 3-kinase activity was only observed in heterodimers containing the p85α and ΔSH3-p85α, indicating that rac binding to the BH domain is responsible for rac-induced stimulation of class Ia PI 3-kinase. We also investigated the effect of SH3 and BH domain deletion on the ability of insulin to induce recruitment of these constructs into phosphotyrosine-containing signaling complexes. We find that p85α expressed alone is poorly recruited into such signaling complexes. However, when coexpressed with catalytic subunit, the p85α adapter subunit is recruited to an extent similar to that of endogenous p85α. Maximal insulin stimulation caused a similar level of recruitment of p85α, ΔSH3-p85α, and ΔBH-p85α to signaling complexes when these adapter subunits were coexpressed with catalytic subunit. However, there was a higher level of basal association of the ΔSH3-p85α and ΔBH-p85α with tyrosine-phosphorylated proteins, meaning that the insulin-induced fold increase in recruitment was lower for these forms of the adapter. These results indicate that the N-terminal domains of p85α play a critical role in the way the adapter subunit responds to growth factor stimulation.  相似文献   

20.
CDw150, a receptor up-regulated on activated T or B lymphocytes, has a key role in regulating B cell proliferation. Patients with X-linked lymphoproliferative disease have mutations in a gene encoding a protein, DSHP/SAP, which interacts with CDw150 and is expressed in B cells. Here we show that CDw150 on B cells associates with two tyrosine-phosphorylated proteins, 59 kDa and 145 kDa in size. The 59-kDa protein was identified as the Src-family kinase Fgr. The 145-kDa protein is the inositol polyphosphate 5'-phosphatase, SH2-containing inositol phosphatase (SHIP). Both Fgr and SHIP interact with phosphorylated tyrosines in CDw150's cytoplasmic tail. Ligation of CDw150 induces the rapid dephosphorylation of both SHIP and CDw150 as well as the association of Lyn and Fgr with SHIP. CD95/Fas-mediated apoptosis is enhanced by signaling via CDw150, and CDw150 ligation can override CD40-induced rescue of CD95-mediated cell death. The ability of CDw150 to regulate cell death does not correlate with serine phosphorylation of the Akt kinase, but does correlate with SHIP tyrosine dephosphorylation. Thus, the CDw150 receptor may function to regulate the fate of activated B cells via SHIP as well as via the DSHP/SAP protein defective in X-linked lymphoproliferative disease patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号