首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure of protein-protein interaction (PPI) networks has already been successfully used as a source of new biological information. Even though cardiovascular diseases (CVDs) are a major global cause of death, many CVD genes still await discovery. We explore ways to utilize the structure of the human PPI network to find important genes for CVDs that should be targeted by drugs. The hope is to use the properties of such important genes to predict new ones, which would in turn improve a choice of therapy. We propose a methodology that examines the PPI network wiring around genes involved in CVDs. We use the methodology to identify a subset of CVD-related genes that are statistically significantly enriched in drug targets and “driver genes.” We seek such genes, since driver genes have been proposed to drive onset and progression of a disease. Our identified subset of CVD genes has a large overlap with the Core Diseasome, which has been postulated to be the key to disease formation and hence should be the primary object of therapeutic intervention. This indicates that our methodology identifies “key” genes responsible for CVDs. Thus, we use it to predict new CVD genes and we validate over 70% of our predictions in the literature. Finally, we show that our predicted genes are functionally similar to currently known CVD drug targets, which confirms a potential utility of our methodology towards improving therapy for CVDs.  相似文献   

2.
Genome-wide linkage and association studies have demonstrated promise in identifying genetic factors that influence health and disease. An important challenge is to narrow down the set of candidate genes that are implicated by these analyses. Protein-protein interaction (PPI) networks are useful in extracting the functional relationships between known disease and candidate genes, based on the principle that products of genes implicated in similar diseases are likely to exhibit significant connectivity/proximity. Information flow?based methods are shown to be very effective in prioritizing candidate disease genes. In this article, we utilize the topology of PPI networks to infer functional information in the context of disease association. Our approach is based on the assumption that PPI networks are organized into recurrent schemes that underlie the mechanisms of cooperation among different proteins. We hypothesize that proteins associated with similar diseases would exhibit similar topological characteristics in PPI networks. Utilizing the location of a protein in the network with respect to other proteins (i.e., the "topological profile" of the proteins), we develop a novel measure to assess the topological similarity of proteins in a PPI network. We then use this measure to prioritize candidate disease genes based on the topological similarity of their products and the products of known disease genes. We test the resulting algorithm, Vavien, via systematic experimental studies using an integrated human PPI network and the Online Mendelian Inheritance in Man (OMIM) database. Vavien outperforms other network-based prioritization algorithms as shown in the results and is available at www.diseasegenes.org.  相似文献   

3.
Proteins are essential macromolecules of life that carry out most cellular processes. Since proteins aggregate to perform function, and since protein-protein interaction (PPI) networks model these aggregations, one would expect to uncover new biology from PPI network topology. Hence, using PPI networks to predict protein function and role of protein pathways in disease has received attention. A debate remains open about whether network properties of "biologically central (BC)" genes (i.e., their protein products), such as those involved in aging, cancer, infectious diseases, or signaling and drug-targeted pathways, exhibit some topological centrality compared to the rest of the proteins in the human PPI network.To help resolve this debate, we design new network-based approaches and apply them to get new insight into biological function and disease. We hypothesize that BC genes have a topologically central (TC) role in the human PPI network. We propose two different concepts of topological centrality. We design a new centrality measure to capture complex wirings of proteins in the network that identifies as TC those proteins that reside in dense extended network neighborhoods. Also, we use the notion of domination and find dominating sets (DSs) in the PPI network, i.e., sets of proteins such that every protein is either in the DS or is a neighbor of the DS. Clearly, a DS has a TC role, as it enables efficient communication between different network parts. We find statistically significant enrichment in BC genes of TC nodes and outperform the existing methods indicating that genes involved in key biological processes occupy topologically complex and dense regions of the network and correspond to its "spine" that connects all other network parts and can thus pass cellular signals efficiently throughout the network. To our knowledge, this is the first study that explores domination in the context of PPI networks.  相似文献   

4.
In microarray-based case–control studies of a disease, people often attempt to identify a few diagnostic or prognostic markers amongst the most significant differentially expressed (DE) genes. However, the reproducibility of DE genes identified in different studies for a disease is typically very low. To tackle the problem, we could evaluate the reproducibility of DE genes across studies and define robust markers for disease diagnosis using disease-associated protein–protein interaction (PPI) subnetwork. Using datasets for four cancer types, we found that the most significant DE genes in cancer exhibit consistent up- or down-regulation in different datasets. For each cancer type, the 5 (or 10) most significant DE genes separately extracted from different datasets tend to be significantly coexpressed and closely connected in the PPI subnetwork, thereby indicating that they are highly reproducible at the PPI level. Consequently, we were able to build robust subnetwork-based classifiers for cancer diagnosis.  相似文献   

5.
6.
Liquid-liquid phase separation (LLPS) is an important mechanism that mediates the formation of biomolecular condensates. Despite the immense interest in LLPS, phase-separated proteins verified by experiments are still limited, and identification of phase-separated proteins at proteome-scale is a challenging task. Multivalent interaction among macromolecules is the driving force of LLPS, which suggests that phase-separated proteins may harbor distinct biological characteristics in protein–protein interactions (PPIs). In this study, we constructed an integrated human PPI network (HPIN) and mapped phase-separated proteins into it. Analysis of the network parameters revealed differences of network topology between phase-separated proteins and others. The results further suggested the efficiency when applying topological similarities in distinguishing components of MLOs. Furthermore, we found that affinity purification mass spectrometry (AP-MS) detects PPIs more effectively than yeast-two hybrid system (Y2H) in phase separation-driven condensates. Our work provides the first global view of the distinct network topology of phase-separated proteins in human interactome, suggesting incorporation of PPI network for LLPS prediction in further studies.  相似文献   

7.

Background

Accurate prediction of cancer prognosis based on gene expression data is generally difficult, and identifying robust prognostic markers for cancer remains a challenging problem. Recent studies have shown that modular markers, such as pathway markers and subnetwork markers, can provide better snapshots of the underlying biological mechanisms by incorporating additional biological information, thereby leading to more accurate cancer classification.

Results

In this paper, we propose a novel method for simultaneously identifying robust synergistic subnetwork markers that can accurately predict cancer prognosis. The proposed method utilizes an efficient message-passing algorithm called affinity propagation, based on which we identify groups – or subnetworks – of discriminative and synergistic genes, whose protein products are closely located in the protein-protein interaction (PPI) network. Unlike other existing subnetwork marker identification methods, our proposed method can simultaneously identify multiple nonoverlapping subnetwork markers that can synergistically predict cancer prognosis.

Conclusions

Evaluation results based on multiple breast cancer datasets demonstrate that the proposed message-passing approach can identify robust subnetwork markers in the human PPI network, which have higher discriminative power and better reproducibility compared to those identified by previous methods. The identified subnetwork makers can lead to better cancer classifiers with improved overall performance and consistency across independent cancer datasets.
  相似文献   

8.
MOTIVATION: The inference of genes that are truly associated with inherited human diseases from a set of candidates resulting from genetic linkage studies has been one of the most challenging tasks in human genetics. Although several computational approaches have been proposed to prioritize candidate genes relying on protein-protein interaction (PPI) networks, these methods can usually cover less than half of known human genes. RESULTS: We propose to rely on the biological process domain of the gene ontology to construct a gene semantic similarity network and then use the network to infer disease genes. We show that the constructed network covers about 50% more genes than a typical PPI network. By analyzing the gene semantic similarity network with the PPI network, we show that gene pairs tend to have higher semantic similarity scores if the corresponding proteins are closer to each other in the PPI network. By analyzing the gene semantic similarity network with a phenotype similarity network, we show that semantic similarity scores of genes associated with similar diseases are significantly different from those of genes selected at random, and that genes with higher semantic similarity scores tend to be associated with diseases with higher phenotype similarity scores. We further use the gene semantic similarity network with a random walk with restart model to infer disease genes. Through a series of large-scale leave-one-out cross-validation experiments, we show that the gene semantic similarity network can achieve not only higher coverage but also higher accuracy than the PPI network in the inference of disease genes.  相似文献   

9.
Many cell activities are organized as a network, and genes are clustered into co-expressed groups if they have the same or closely related biological function or they are co-regulated. In this study, based on an assumption that a strong candidate disease gene is more likely close to gene groups in which all members coordinately differentially express than individual genes with differential expression, we developed a novel disease gene prioritization method GroupRank by integrating gene co-expression and differential expression information generated from microarray data as well as PPI network. A candidate gene is ranked high using GroupRank if it is differentially expressed in disease and control or is close to differentially co-expressed groups in PPI network. We tested our method on data sets of lung, kidney, leukemia and breast cancer. The results revealed GroupRank could efficiently prioritize disease genes with significantly improved AUC value in comparison to the previous method with no consideration of co-exprssed gene groups in PPI network. Moreover, the functional analyses of the major contributing gene group in gene prioritization of kidney cancer verified that our algorithm GroupRank not only ranks disease genes efficiently but also could help us identify and understand possible mechanisms in important physiological and pathological processes of disease.  相似文献   

10.
Ten-eleven translocation (TET) proteins, a family of Fe2+- and 2-oxoglutarate-dependent dioxygenases, are involved in DNA demethylation. Three TET paralogs have been identified (TET1, TET2, and TET3) and they show different patterns of tissue-specific expression. In our previous evolutionary studies, we found that the TET1 and TET2 genes underwent positive selection more frequently than the TET3 gene, possibly due to changes in the selective constraints during their evolutionary process. In this study, we performed a network-based analysis of the mRNA expression profiles of TET knockdown and the TET-containing co-expression modules identified in early human developmental stages. Analyses based on the PPI subnetwork demonstrated that TET DEGs PPI subnetwork genes were more evolutionarily conserved than all the human-chimpanzee orthologs during evolutionary history. GO annotation of gene co-expression modules containing a TET gene ortholog revealed particular features of the potential role of TET gene family members. Our study implicated the TET1 module in fundamental aspects of cellular physiology, such as the regulation of glucose metabolism, and the TET2 module in GPCR signal transduction. The TET3 module was related to signaling pathways involved in developmental regulation. The evolutionary rate and phylogenetic age distribution analysis of network member genes also support these network-based analyses. The present study provides an integrated view of TET gene family properties and might be informative for elucidating the molecular mechanisms of their biological functions.  相似文献   

11.
Porcine pleuropneumonia caused by Actinobacillus pleuropneumoniae has led to severe economic losses in the pig industry worldwide. A. pleuropneumoniae displays various levels of antimicrobial resistance, leading to the dire need to identify new drug targets. Protein–protein interaction (PPI) network can aid the identification of drug targets by discovering essential proteins during the life of bacteria. The aim of this study is to identify drug target candidates of A. pleuropneumoniae from essential proteins in PPI network. The homologous protein mapping method (HPM) was utilized to construct A. pleuropneumoniae PPI network. Afterwards, the subnetwork centered with H-NS was selected to verify the PPI network using bacterial two-hybrid assays. Drug target candidates were identified from the hub proteins by analyzing the topology of the network using interaction degree and homologous comparison with the pig proteome. An A. pleuropneumoniae PPI network containing 2737 non-redundant interaction pairs among 533 proteins was constructed. These proteins were distributed in 21 COG functional categories and 28 KEGG metabolic pathways. The A. pleuropneumoniae PPI network was scale free and the similar topological tendencies were found when compared with other bacteria PPI network. Furthermore, 56.3% of the H-NS subnetwork interactions were validated. 57 highly connected proteins (hub proteins) were identified from the A. pleuropneumoniae PPI network. Finally, 9 potential drug targets were identified from the hub proteins, with no homologs in swine. This study provides drug target candidates, which are promising for further investigations to explore lead compounds against A. pleuropneumoniae.  相似文献   

12.
Abdominal aortic aneurysm (AAA) is frequently lethal and has no effective pharmaceutical treatment, posing a great threat to human health. Previous bioinformatics studies of the mechanisms underlying AAA relied largely on the detection of direct protein-protein interactions (level-1 PPI) between the products of reported AAA-related genes. Thus, some proteins not suspected to be directly linked to previously reported genes of pivotal importance to AAA might have been missed. In this study, we constructed an indirect protein-protein interaction (level-2 PPI) network based on common interacting proteins encoded by known AAA-related genes and successfully predicted previously unreported AAA-related genes using this network. We used four methods to test and verify the performance of this level-2 PPI network: cross validation, human AAA mRNA chip array comparison, literature mining, and verification in a mouse CaPO4 AAA model. We confirmed that the new level-2 PPI network is superior to the original level-1 PPI network and proved that the top 100 candidate genes predicted by the level-2 PPI network shared similar GO functions and KEGG pathways compared with positive genes.  相似文献   

13.
One of the challenging problems in biology and medicine is exploring the underlying mechanisms of genetic diseases. Recent studies suggest that the relationship between genetic diseases and the aging process is important in understanding the molecular mechanisms of complex diseases. Although some intricate associations have been investigated for a long time, the studies are still in their early stages. In this paper, we construct a human disease-aging network to study the relationship among aging genes and genetic disease genes. Specifically, we integrate human protein-protein interactions (PPIs), disease-gene associations, aging-gene associations, and physiological system–based genetic disease classification information in a single graph-theoretic framework and find that (1) human disease genes are much closer to aging genes than expected by chance; and (2) diseases can be categorized into two types according to their relationships with aging. Type I diseases have their genes significantly close to aging genes, while type II diseases do not. Furthermore, we examine the topological characters of the disease-aging network from a systems perspective. Theoretical results reveal that the genes of type I diseases are in a central position of a PPI network while type II are not; (3) more importantly, we define an asymmetric closeness based on the PPI network to describe relationships between diseases, and find that aging genes make a significant contribution to associations among diseases, especially among type I diseases. In conclusion, the network-based study provides not only evidence for the intricate relationship between the aging process and genetic diseases, but also biological implications for prying into the nature of human diseases.  相似文献   

14.
A disease phenotype generally reflects various pathobiological processes that interact in a complex network. The highly interconnected nature of the human protein interaction network(interactome) indicates that, at the molecular level, it is difficult to consider diseases as being independent of one another. Recently, genome-wide molecular measurements, data mining and bioinformatics approaches have provided the means to explore human diseases from a molecular basis. The exploration of diseases and a system of disease relationships based on the integration of genome-wide molecular data with the human interactome could offer a powerful perspective for understanding the molecular architecture of diseases. Recently, subnetwork markers have proven to be more robust and reliable than individual biomarker genes selected based on gene expression profiles alone, and achieve higher accuracy in disease classification. We have applied one of these methodologies to idiopathic dilated cardiomyopathy(IDCM) data that we have generated using a microarray and identified significant subnetworks associated with the disease. In this paper, we review the recent endeavours in this direction, and summarize the existing methodologies and computational tools for network-based analysis of complex diseases and molecular relationships among apparently different disorders and human disease network. We also discuss the future research trends and topics of this promising field.  相似文献   

15.
Raj A  Chen YH 《PloS one》2011,6(9):e14832
Minimization of the wiring cost of white matter fibers in the human brain appears to be an organizational principle. We investigate this aspect in the human brain using whole brain connectivity networks extracted from high resolution diffusion MRI data of 14 normal volunteers. We specifically address the question of whether brain anatomy determines its connectivity or vice versa. Unlike previous studies we use weighted networks, where connections between cortical nodes are real-valued rather than binary off-on connections. In one set of analyses we found that the connectivity structure of the brain has near optimal wiring cost compared to random networks with the same number of edges, degree distribution and edge weight distribution. A specifically designed minimization routine could not find cheaper wiring without significantly degrading network performance. In another set of analyses we kept the observed brain network topology and connectivity but allowed nodes to freely move on a 3D manifold topologically identical to the brain. An efficient minimization routine was written to find the lowest wiring cost configuration. We found that beginning from any random configuration, the nodes invariably arrange themselves in a configuration with a striking resemblance to the brain. This confirms the widely held but poorly tested claim that wiring economy is a driving principle of the brain. Intriguingly, our results also suggest that the brain mainly optimizes for the most desirable network connectivity, and the observed brain anatomy is merely a result of this optimization.  相似文献   

16.
Protein-protein interaction (PPI) network analysis has been considered as a useful approach to explore the mechanisms of complex diseases, such as cancer. To date, many proteins have been reported to involve in the development of cancer. Exploration of cancer proteins in the human PPI network may provide important biological information to uncover molecular mechanisms of cancer. Here, we have explored network characteristics (including degree, betweenness, clustering coefficient and shortest-path distance) of cancer proteins of the human nuclear and tyrosine kinases receptors network (NR-RTK) constructed in our earlier work. We found that the network topology of cancer proteins in this network have some specific features. Relative to the non-cancer proteins, the cancer proteins have likely higher degree, higher betweenness, similar clustering coefficient and similar shortest-path distance. Finally, we found that the cancer proteins were involved mainly in signalling pathways which dysfunction is directly related to cancer onset. These findings are helpful for cancer candidate protein prioritization and verification, and identification of key pathways involved in cancer disease.  相似文献   

17.
Fusarium graminearum is the pathogenic agent of Fusarium head blight (FHB), which is a destructive disease on wheat and barley, thereby causing huge economic loss and health problems to human by contaminating foods. Identifying pathogenic genes can shed light on pathogenesis underlying the interaction between F. graminearum and its plant host. However, it is difficult to detect pathogenic genes for this destructive pathogen by time-consuming and expensive molecular biological experiments in lab. On the other hand, computational methods provide an alternative way to solve this problem. Since pathogenesis is a complicated procedure that involves complex regulations and interactions, the molecular interaction network of F. graminearum can give clues to potential pathogenic genes. Furthermore, the gene expression data of F. graminearum before and after its invasion into plant host can also provide useful information. In this paper, a novel systems biology approach is presented to predict pathogenic genes of F. graminearum based on molecular interaction network and gene expression data. With a small number of known pathogenic genes as seed genes, a subnetwork that consists of potential pathogenic genes is identified from the protein-protein interaction network (PPIN) of F. graminearum, where the genes in the subnetwork are further required to be differentially expressed before and after the invasion of the pathogenic fungus. Therefore, the candidate genes in the subnetwork are expected to be involved in the same biological processes as seed genes, which imply that they are potential pathogenic genes. The prediction results show that most of the pathogenic genes of F. graminearum are enriched in two important signal transduction pathways, including G protein coupled receptor pathway and MAPK signaling pathway, which are known related to pathogenesis in other fungi. In addition, several pathogenic genes predicted by our method are verified in other pathogenic fungi, which demonstrate the effectiveness of the proposed method. The results presented in this paper not only can provide guidelines for future experimental verification, but also shed light on the pathogenesis of the destructive fungus F. graminearum.  相似文献   

18.
To determine a molecular basis for prognostic differences in glioblastoma multiforme (GBM), we employed a combinatorial network analysis framework to exhaustively search for molecular patterns in protein-protein interaction (PPI) networks. We identified a dysregulated molecular signature distinguishing short-term (survival<225 days) from long-term (survival>635 days) survivors of GBM using whole genome expression data from The Cancer Genome Atlas (TCGA). A 50-gene subnetwork signature achieved 80% prediction accuracy when tested against an independent gene expression dataset. Functional annotations for the subnetwork signature included “protein kinase cascade,” “IκB kinase/NFκB cascade,” and “regulation of programmed cell death” – all of which were not significant in signatures of existing subtypes. Finally, we used label-free proteomics to examine how our subnetwork signature predicted protein level expression differences in an independent GBM cohort of 16 patients. We found that the genes discovered using network biology had a higher probability of dysregulated protein expression than either genes exhibiting individual differential expression or genes derived from known GBM subtypes. In particular, the long-term survivor subtype was characterized by increased protein expression of DNM1 and MAPK1 and decreased expression of HSPA9, PSMD3, and CANX. Overall, we demonstrate that the combinatorial analysis of gene expression data constrained by PPIs outlines an approach for the discovery of robust and translatable molecular signatures in GBM.  相似文献   

19.
The prioritization of candidate disease-causing genes is a fundamental challenge in the post-genomic era. Current state of the art methods exploit a protein-protein interaction (PPI) network for this task. They are based on the observation that genes causing phenotypically-similar diseases tend to lie close to one another in a PPI network. However, to date, these methods have used a static picture of human PPIs, while diseases impact specific tissues in which the PPI networks may be dramatically different. Here, for the first time, we perform a large-scale assessment of the contribution of tissue-specific information to gene prioritization. By integrating tissue-specific gene expression data with PPI information, we construct tissue-specific PPI networks for 60 tissues and investigate their prioritization power. We find that tissue-specific PPI networks considerably improve the prioritization results compared to those obtained using a generic PPI network. Furthermore, they allow predicting novel disease-tissue associations, pointing to sub-clinical tissue effects that may escape early detection.  相似文献   

20.
Dynamical behavior of a biological neuronal network depends significantly on the spatial pattern of synaptic connections among neurons. While neuronal network dynamics has extensively been studied with simple wiring patterns, such as all-to-all or random synaptic connections, not much is known about the activity of networks with more complicated wiring topologies. Here, we examined how different wiring topologies may influence the response properties of neuronal networks, paying attention to irregular spike firing, which is known as a characteristic of in vivo cortical neurons, and spike synchronicity. We constructed a recurrent network model of realistic neurons and systematically rewired the recurrent synapses to change the network topology, from a localized regular and a “small-world” network topology to a distributed random network topology. Regular and small-world wiring patterns greatly increased the irregularity or the coefficient of variation (Cv) of output spike trains, whereas such an increase was small in random connectivity patterns. For given strength of recurrent synapses, the firing irregularity exhibited monotonous decreases from the regular to the random network topology. By contrast, the spike coherence between an arbitrary neuron pair exhibited a non-monotonous dependence on the topological wiring pattern. More precisely, the wiring pattern to maximize the spike coherence varied with the strength of recurrent synapses. In a certain range of the synaptic strength, the spike coherence was maximal in the small-world network topology, and the long-range connections introduced in this wiring changed the dependence of spike synchrony on the synaptic strength moderately. However, the effects of this network topology were not really special in other properties of network activity. Action Editor: Xiao-Jing Wang  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号