首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ubiquitous 24-meric iron-storage protein ferritin and multicopper oxidases such as ceruloplasmin or hephaestin catalyze oxidation of Fe(II) to Fe(III), using molecular oxygen as oxidant. The ferroxidase activity of these proteins is essential for cellular iron homeostasis. It has been reported that the amyloid precursor protein (APP) also has ferroxidase activity. The activity is assigned to a ferroxidase site in the E2 domain of APP. A synthetic 22-residue peptide that carries the putative ferroxidase site of E2 domain (FD1 peptide) has been claimed to encompass the same activity. We previously tested the ferroxidase activity of the synthetic FD1 peptide but we did not observe any activity above the background oxidation of Fe(II) by molecular oxygen. Here we used isothermal titration calorimetry to study Zn(II) and Fe(II) binding to the natural E2 domain of APP, and we employed the transferrin assay and oxygen consumption measurements to test the ferroxidase activity of the E2 domain. We found that this domain neither in the presence nor in the absence of the E1 domain binds Fe(II) and it is not able to catalyze the oxidation of Fe(II). Binding of Cu(II) to the E2 domain did not induce ferroxidase activity contrary to the presence of redox active Cu(II) centers in ceruloplasmin or hephaestin. Thus, we conclude that E2 or E1 domains of APP do not have ferroxidase activity and that the potential involvement of APP as a ferroxidase in the pathology of Alzheimer’s disease must be re-evaluated.  相似文献   

2.
Aceruloplasminemia, an inherited disorder of iron metabolism   总被引:5,自引:0,他引:5  
Ceruloplasmin, a multi-copper ferroxidase that affects the distribution of tissue iron, has antioxidant effects through the oxidation of ferrous iron to ferric iron. Aceruloplasminemia is an inherited disorder of iron metabolism due to the complete lack of ceruloplasmin ferroxidase activity caused by mutations in the ceruloplasmin gene. It is characterized by iron accumulation in the brain as well as visceral organs. Clinically, the disease consists of the triad of retinal degeneration, diabetes mellitus, and neurological disease, which include ataxia, involuntary movements, and dementia. These symptoms reflect the sites of iron deposition. The unique involvement of the central nervous system distinguishes aceruloplasminemia from other inherited and acquired iron storage disorders. Twenty-one mutations in the ceruloplasmin gene have been reported in 24 families worldwide. In Japan, the incidence was estimated to be approximately one per 2,000,000 in the case of non-consanguineous marriages. Excess iron functions as a potent catalyst of biologic oxidation. Previously we showed that an increased iron concentration is associated with increased levels of lipid peroxidation in the serum, cerebrospinal fluid, and erythrocyte membranes. The levels of malondialdehyde and 4-hydroxynonenals, indicators of lipid peroxidation, were also elevated in the basal ganglia and cerebral cortex. Positron emission tomography showed diminished brain metabolism of glucose and oxygen. Enzyme activities in the mitochondrial respiratory chain of the basal ganglia were reduced to approximate 45% and 42%, respectively, for complexes I and IV. These findings suggest that iron-mediated free radicals causes neuronal cell damage through lipid peroxidation and mitochondrial dysfunction in aceruloplasminemia brains.  相似文献   

3.
The β-amyloid precursor protein (APP), which is a key player in Alzheimer's disease, was recently reported to possess an Fe(II) binding site within its E2 domain which exhibits ferroxidase activity [Duce et al. 2010, Cell 142: 857]. The putative ligands of this site were compared to those in the ferroxidase site of ferritin. The activity was indirectly measured using transferrin, which scavenges the Fe(III) product of the reaction. A 22-residue synthetic peptide, named FD1, with the putative ferroxidase site of APP, and the E2 domain of APP were each reported to exhibit 40% of the ferroxidase activity of APP and of ceruloplasmin. It was also claimed that the ferroxidase activity of APP is inhibited by Zn(II) just as in ferritin. We measured the ferroxidase activity indirectly (i) by the incorporation of the Fe(III) product of the ferroxidase reaction into transferrin and directly (ii) by monitoring consumption of the substrate molecular oxygen. The results with the FD1 peptide were compared to the established ferroxidase activities of human H-chain ferritin and of ceruloplasmin. For FD1 we observed no activity above the background of non-enzymatic Fe(II) oxidation by molecular oxygen. Zn(II) binds to transferrin and diminishes its Fe(III) incorporation capacity and rate but it does not specifically bind to a putative ferroxidase site of FD1. Based on these results, and on comparison of the putative ligands of the ferroxidase site of APP with those of ferritin, we conclude that the previously reported results for ferroxidase activity of FD1 and - by implication - of APP should be re-evaluated.  相似文献   

4.
Nitroxide stable radicals generally serve for probing molecular motion in membranes and whole cells, transmembrane potential, intracellular oxygen and pH, and are tested as contrast agents for magnetic resonance imaging. Recently nitroxides were found to protect against oxidative stress. Unlike most low molecular weight antioxidants (LMWA) which are depleted while attenuating oxidative damage, nitroxides can be recycled. In many cases the antioxidative activity of nitroxides is associated with switching between their oxidized and reduced forms. In the present work, superoxide radicals were generated either radiolytically or enzymatically using hypoxanthine/xanthine oxidase. Electron paramagnetic resonance (EPR) spectrometry was used to follow the exchange between the nitroxide radical and its reduced form; whereas, pulse radiolysis was employed to study the kinetics of hydroxylamine oxidation. The results indicate that: a) The rate constant of superoxide reaction with cyclic hydroxylamines is pH-independent and is lower by several orders of magnitude than the rate constant of superoxide reaction with nitroxides; b) The oxidation of hydroxylamine by superoxide is primarily responsible for the non-enzymatic recycling of nitroxides; c) The rate of nitroxides restoration decreases as the pH decreases because nitroxides remove superoxide more efficiently than is hydroxylamine oxidation; d) The hydroxylamine reaction with oxidized nitroxide (comproportionation) might participate in the exchange among the three oxidation states of nitroxide. However, simulation of the time-dependence and pH-dependence of the exchange suggests that such a comproportionation is too slow to affect the rate of non-enzymatic nitroxide restoration. We conclude that the protective activity of nitroxides in vitro can be distinguished from that of common LMWA due to hydroxylamine oxidation by superoxide, which allows nitroxide recycling and enables its catalytic activity.  相似文献   

5.
Hephaestin is a multicopper ferroxidase involved in iron absorption in the small intestine. Expressed mainly on the basolateral surface of duodenal enterocytes, hephaestin facilitates the export of iron from the intestinal epithelium into blood by oxidizing Fe(2+) into Fe(3+), the only form of iron bound by the plasma protein transferrin. Structurally, the human hephaestin ectodomain is predicted to resemble ceruloplasmin, the major multicopper oxidase in blood. In addition to its ferroxidase activity, ceruloplasmin was reported to oxidize a wide range of organic compounds including a group of physiologically relevant substrates (biogenic amines). To study oxidation of organic substrates, the human hephaestin ectodomain was expressed in Pichia pastoris. The purified recombinant hephaestin has an average copper content of 4.2 copper atoms per molecule. The K(m) for Fe(2+) of hephaestin was determined to be 3.2μM which is consistent with the K(m) values for other multicopper ferroxidases. In addition, the K(m) values of hephaestin for such organic substrates as p-phenylenediamine and o-dianisidine are close to values determined for ceruloplasmin. However, in contrast to ceruloplasmin, hephaestin was incapable of direct oxidation of adrenaline and dopamine implying a difference in biological substrate specificities between these two homologous ferroxidases.  相似文献   

6.
Ceruloplasmin (CP) is the major plasma antioxidant and copper transport protein. In a previous study, we showed that the aggregation of human ceruloplasmin was induced by peroxyl radicals. We investigated the effects of antioxidant dipeptides carnosine, homocarnosine and anserine on peroxyl radical-mediated ceruloplasmin modification. Carnosine, homocarnosine and anserine significantly inhibited the aggregation of CP induced by peroxyl radicals. When CP was incubated with peroxyl radicals in the presence of three compounds, ferroxidase activity, as measured by the activity staining method, was protected. All three compounds also inhibited the formation of dityrosine in peroxyl radicals-treated CP. The results suggest that carnosine and related compounds act as peroxyl radical scavenger to protect the protein modification. It is proposed that carnosine and related peptides might be explored as potential therapeutic agents for pathologies that involve CP modification mediated by peroxyl radicals generated in the lipid peroxidation.  相似文献   

7.
The preparation and properties of ceruloplasmin from chicken serum are described. Ethanol-CHCl3 was used to precipitate the crude protein, followed by adsorption and elution from DEAE-Sephadex. Further treatment with Sephadex G-200 and CM-Sephadex yielded an intensely blue protein judged 1572-fold purer than starting serum. epsilon-Aminocaproic acid (0.02 M) was present in all buffers and starting sera. Chicken ceruloplasmin appears to be a single polypeptide, apparent Mr 124,000, with an A610/A280 ratio of 0.07 and an absorption maximum at 602 nm. Hexose, hexosamine, and sialic acid accounted for 7.2% of the weight; copper represented 0.20%, which suggested four or five copper atoms per molecule. Chicken ceruloplasmin catalyzed the azide-sensitive oxidation of p-phenylenediamine (PPD) and N,N'-dimethyl-p-phenylenediamine (DPD), and showed ferroxidase activity similar to that of human ceruloplasmin. Its amino acid composition, although similar in many residues to human ceruloplasmin, was decidedly lower in methionine and tyrosine. The chicken protein had one-third the sialic acid content of human ceruloplasmin and showed immunochemical nonidentity with human ceruloplasmin.  相似文献   

8.
In order to elucidate the nature of linkage between the oxidase activity and protective effect of ceruloplasmin during the Fe2(+)-induced lysis of erythrocytes, the both factors were identified in ceruloplasmin samples prepared from blood sera of healthy donors and patients with hepatocerebral dystrophy (HCD). It was found that the oxidase activity of healthy donor ceruloplasmin markedly exceeds that of HCD patients, whereas the protective effect of the HCD protein, contrariwise, markedly exceeds that of normal ceruloplasmin. The data obtained suggest that the protective effect of ceruloplasmin during Fe2(+)-induced erythrocyte lysis is not correlated with its oxidase (ferroxidase, in particular) activity.  相似文献   

9.
The role of ceruloplasmin as a ferroxidase in the blood, mediating the release of iron from cells and its subsequent incorporation into serum transferrin, has long been the subject of speculation and debate. However, a recent X-ray crystal structure determination of human ceruloplasmin at a resolution of around 3.0?Å, in conjunction with studies associating mutations in the ceruloplasmin gene with systemic haemosiderosis in humans, has added considerable weight to the argument in favour of a ferroxidase role for this enzyme. Further X-ray studies have now been undertaken involving the binding of the cations Co(II), Fe(II), Fe(III), and Cu(II) to ceruloplasmin. These results give insights into a mechanism for ferroxidase activity in ceruloplasmin. The residues and sites involved in ferroxidation are similar to those proposed for the heavy chains of human ferritin. The nature of the ferroxidase activity of human ceruloplasmin is described in terms of its three-dimensional molecular structure.  相似文献   

10.
The copper-containing protein caeruloplasmin is an important biological extracellular protein. By catalysing the oxidation of ferrous ions to the ferric state (ferroxidase activity) it can inhibit lipid peroxidation and the Fenton reaction. This activity is readily destroyed by heat-denaturation. When a ferric-EDTA complex is added to hydrogen peroxide, OH X radicals are formed in a reaction inhibitable by superoxide dismutase (SOD). This reaction is also inhibited by caeruloplasmin both before and after heat-denaturation, suggesting a non-catalytic scavenging role for the protein. A combination of ferroxidase and radical scavenging activities in fluids containing iron complexes and hydrogen peroxide, but no SOD or catalase, would make caeruloplasmin an important extracellular antioxidant.  相似文献   

11.
Lung epithelial lining fluid (ELF) is a thin layer of plasma ultrafiltrate and locally secreted substances that may provide antioxidant protection and serve as a "front-line" defense for the lower respiratory tract epithelium. To characterize the antioxidant properties of ELF, young, healthy, nonsmoking volunteers underwent bronchoalveolar lavage with determination of ELF volumes and ELF proteins. ELF (greater than 0.4 ml) is a potent inhibitor of lipid peroxidation as measured by malondialdehyde (MDA) production in an in vitro iron-dependent assay system. Two serum proteins, transferrin and ceruloplasmin, were quantitated in ELF and found to be potent inhibitors of lipid peroxidation. Other ELF components, including vitamin E, vitamin C, and albumin, did not function as antioxidants in this system. Several experimental observations suggest that ELF transferrin was more important than ceruloplasmin in inhibiting lipid peroxidation: 1) ELF concentrations of transferrin were 20-fold higher than those for ceruloplasmin; 2) ELF antioxidant activity was abolished by preincubation with Fe3+; 3) ELF antioxidant activity was minimally affected by sodium azide, which is known to inhibit ceruloplasmin ferroxidase activity; and 4) ELF ceruloplasmin ferroxidase activity was virtually nondetectable. ELF possesses a significant antioxidant activity that may be important in vivo in protecting the lung from oxidant injury.  相似文献   

12.
Recombinant human ferritin loaded with iron via its own ferroxidase activity did not sediment through a sucrose-density gradient as a function of iron content. Analysis of the recombinant ferritin by native PAGE demonstrated an increase in altered migration pattern of the ferritins with increasing sedimentation, indicating an alteration of the overall charge of ferritin. Additionally, analysis of the ferritin by SDS-PAGE under nonreducing conditions demonstrated that the ferritin had formed large aggregates, which suggests disulfide bonds are involved in the aggregation. The hydroxyl radical was detected by electron spin resonance spectroscopy during iron loading into recombinant ferritin by its own ferroxidase activity. However, recombinant human ferritin loaded with iron in the presence of ceruloplasmin sedimented through a sucrose-density gradient similar to native ferritin. This ferritin was shown to sediment as a function of iron content. The addition of ceruloplasmin to the iron loading assay eliminated the detection of the DMPO-*OH adduct observed during loading using the ferroxidase activity of ferritin. The elimination of the DMPO-*OH adduct was determined to be due to the ability of ceruloplasmin to completely reduce oxygen to water during the oxidation of the ferrous iron. The implications of these data for the present models for iron uptake into ferritin are discussed.  相似文献   

13.
Amyloid beta (Abeta) peptides play an important role in the pathogenesis of Alzheimer's disease. Free radical generation by Abeta peptides was suggested to be a key mechanism of their neurotoxicity. Reports that neurotoxic free radicals derived from Abeta-(1-40) and Abeta-(25-35) peptides react with the spin trap N-tert-butyl-alpha-phenylnitrone (PBN) to form a PBN/.Abeta peptide radical adduct with a specific triplet ESR signal assert that the peptide itself was the source of free radicals. We now report that three Abeta peptides, Abeta-(1-40), Abeta-(25-35), and Abeta-(40-1), do not yield radical adducts with PBN from the Oklahoma Medical Research Foundation (OMRF). In contrast to OMRF PBN, incubation of Sigma PBN in phosphate buffer without Abeta peptides produced a three-line ESR spectrum. It was shown that this nitroxide is di-tert-butylnitroxide and is formed in the Sigma PBN solution as a result of transition metal-catalyzed auto-oxidation of the respective hydroxylamine present as an impurity in the Sigma PBN. Under some conditions, incubation of PBN from Sigma with Abeta-(1-40) or Abeta-(25-35) can stimulate the formation of di-tert-butylnitroxide. It was shown that Abeta peptides enhanced oxidation of cyclic hydroxylamine 1-hydroxy-4-oxo-2,2,6, 6-tetramethylpiperidine (TEMPONE-H), which was strongly inhibited by the treatment of phosphate buffer with Chelex-100. It was shown that ferric and cupric ions are effective oxidants of TEMPONE-H. The data obtained allow us to conclude that under some conditions toxic Abeta peptides Abeta-(1-40) and Abeta-(25-35) enhance metal-catalyzed oxidation of hydroxylamine derivatives, but do not spontaneously form peptide-derived free radicals.  相似文献   

14.
Ceruloplasmin plays an essential role in cellular iron efflux by oxidizing ferrous iron exported from ferroportin. Ferroportin is posttranslationally regulated through internalization triggered by hepcidin binding. Aceruloplasminemia is an autosomal recessive disorder of iron homeostasis resulting from mutations in the ceruloplasmin gene. The present study investigated the biological effects of glycosylphosphatidylinositol (GPI)-linked ceruloplasmin on the hepcidin-mediated internalization of ferroportin. The prevention of hepcidin-mediated ferroportin internalization was observed in the glioma cells lines expressing endogenous ceruloplasmin as well as in the cells transfected with GPI-linked ceruloplasmin under low levels of hepcidin. A decrease in the extracellular ferrous iron by an iron chelator and incubation with purified ceruloplasmin in the culture medium prevented hepcidin-mediated ferroportin internalization, while the reconstitution of apo-ceruloplasmin was not able to prevent ferroportin internalization. The effect of ceruloplasmin on the ferroportin stability was impaired due to three distinct properties of the mutant ceruloplasmin: namely, a decreased ferroxidase activity, the mislocalization in the endoplasmic reticulum, and the failure of copper incorporation into apo-ceruloplasmin. Patients with aceruloplasminemia exhibited low serum hepcidin levels and a decreased ferroportin protein expression in the liver. The in vivo findings supported the notion that under low levels of hepcidin, mutant ceruloplasmin cannot stabilize ferroportin because of a loss-of-function in the ferroxidase activity, which has been reported to play an important role in the stability of ferroportin. The properties of mutant ceruloplasmin regarding the regulation of ferroportin may therefore provide a therapeutic strategy for aceruloplasminemia patients.  相似文献   

15.
When dimethyl sulfoxide (DMSO) is oxidized via hydroxyl radical (HO(.-)), it forms methyl radicals ((.-)CH(3)) that can be spin trapped and detected by electron spin resonance (ESR). This ESR spin trapping technique has been widely used in many biological systems to indicate in vivo HO(.-) formation. However, we recently reported that (.-)CH(3) might not be the only carbon-centered radical that was trapped and detected by ESR from in vivo DMSO oxidation. In the present study, newly developed combination techniques consisting of dual spin trapping (free radicals trapped by both regular and deuterated alpha-[4-pyridyl 1]-N-tert-butyl nitrone, d(0)/d(9)-POBN) followed by LC/ESR and LC/MS were used to characterize and quantify all POBN-trapped free radicals from the interaction of HO(.-) and DMSO. In addition to identifying the two well-known free radicals, (.-)CH(3) and (.-)OCH(3), from this interaction, we also characterized two additional free radicals, (.-)CH(2)OH and (.-)CH(2)S(O)CH(3). Unlike ESR, which can measure POBN adducts only in their radical forms, LC/MS identified and quantified all three redox forms, including the ESR-active radical adduct and two ESR-silent forms, the nitrone adduct (oxidized adduct) and the hydroxylamine (reduced adduct). In the bile of rats treated with DMSO and POBN, the ESR-active form of POBN/(.-)CH(3) was not detected. However, with the addition of the LC/MS technique, we found approximately 0.75 microM POBN/(.-)CH(3) hydroxylamine, which represents a great improvement in radical detection sensitivity and reliability. This novel protocol provides a comprehensive way to characterize and quantify in vitro and in vivo free radical formation and will have many applications in biological research.  相似文献   

16.
Ceruloplasmin, a copper ferroxidase, promotes the incorporation of Fe(III) into the iron storage protein, apoferritin. The product formed is identical to ferritin as judged by polyacrylamide electrophoresis and iron/protein measurements. Of several proteins examined, only apoferritin accumulates the Fe(III) produced by ceruloplasmin. When ceruloplasmin was replaced by tyrosinase, which we have shown to have ferroxidase activity, no iron incorporation into apoferritin was observed. It is proposed that Fe(III) is transferred directly and specifically to apoferritin. These data support a more specific role for ceruloplasmin in iron metabolism than has previously been proposed.  相似文献   

17.
Purified rat ceruloplasmin is extraordinarily unstable in storage at –70 °C. In a 20 mM phosphate buffer, pH 7.0, the ferroxidase and amine oxidase of ceruloplasmin are over 90% inactivated within two weeks. Holoceruloplasmin stored for three months in a 20 mM barbital buffer (or acetate buffer), pH 7.0 (or pH 5.5) was transformed into an apo-protein and amine (o-dianisidine) oxidase of ceruloplasmin was inactivated by 50–55%. The patterns of ferroxidase activity loss were similar to those of amine oxidase activity loss. On the contrary, when holoceruloplasmin was mixed with rat serum albumin, transformation into apoceruloplasmin was significantly prevented in a 20 mM barbital buffer, pH 7.0 (or 20 mM acetate buffer, pH 5.5). Consequently, ferroxidase and amine oxidase activities of ceruloplasmin were not inactivated and the immunochemical reactivity was not changed. These results can be applied for laboratorial and clinical purposes.  相似文献   

18.
In the neonatal period, there is a high iron load, while both the level and molar oxidase activity of ceruloplasmin are low. On the other hand, the neonatal xanthine oxidase (XO) activity is higher than later in life and XO has a significant iron-oxidizing capacity. We therefore studied the physiological contribution of XO to the ferroxidase activity of the plasma in 20 full-term newborn infants. Ferroxidase activity was measured spectrophotometrically, with Fe++ as substrate. The uric acid formed by XO was assayed by means of HPLC, with electrochemical detection.

The total ferroxidase activity in the plasma was about one-fourth of the adult level and rapidly increased doubling within 3 days after birth. About 90% of the plasma ferroxidase activity was due to ceruloplasmin, the remainder being accounted for by ferroxidase II. The XO activity underwent a 30% (statistically non-significant) elevation at 24 h, though ferroxidase activity attributable to XO was not detected at any time.

Accordingly, XO does not seem to add substantially to the total iron-oxidizing capacity of the plasma in the neonatal period. The high molar ferroxidase activity is probably of importance at the endothelial cell surface.  相似文献   

19.
Self-reduction of an Fe3+-ADP-adriamycin complex under anaerobic conditions and reduction of ferricytochrome c by the complex under aerobic conditions were strongly inhibited by ceruloplasmin, but not by superoxide dismutase or albumin at the same protein concentration. Ceruloplasmin, a protein with ferroxidase activity, is able to catalyse oxidation of Fe2+ to the ferric state. The inhibitory activity of ceruloplasmin towards reactions stimulated by the complex suggests that Fe2+ is formed during the self-reduction process. As expected, the Fe3+-ADP-adriamycin complex stimulated lipid peroxidation in which the Fe2+ moiety was implicated. This stimulation was again effectively prevented by ceruloplasmin but not by superoxide dismutase.  相似文献   

20.
In the neonatal period, there is a high iron load, while both the level and molar oxidase activity of ceruloplasmin are low. On the other hand, the neonatal xanthine oxidase (XO) activity is higher than later in life and XO has a significant iron-oxidizing capacity. We therefore studied the physiological contribution of XO to the ferroxidase activity of the plasma in 20 full-term newborn infants. Ferroxidase activity was measured spectrophotometrically, with Fe++ as substrate. The uric acid formed by XO was assayed by means of HPLC, with electrochemical detection.

The total ferroxidase activity in the plasma was about one-fourth of the adult level and rapidly increased doubling within 3 days after birth. About 90% of the plasma ferroxidase activity was due to ceruloplasmin, the remainder being accounted for by ferroxidase II. The XO activity underwent a 30% (statistically non-significant) elevation at 24 h, though ferroxidase activity attributable to XO was not detected at any time.

Accordingly, XO does not seem to add substantially to the total iron-oxidizing capacity of the plasma in the neonatal period. The high molar ferroxidase activity is probably of importance at the endothelial cell surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号