首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Escherichia coli strains carrying null alleles of genes encoding single-strand-specific exonucleases ExoI and ExoVII display elevated frameshift mutation rates but not base substitution mutation rates. We characterized increased spontaneous frameshift mutation in ExoI- ExoVII- cells and report that some of this effect requires RecA, an inducible SOS DNA damage response, and the low-fidelity, SOS-induced DNA polymerase DinB/PolIV, which makes frameshift mutations preferentially. We also find that SOS is induced in ExoI- ExoVII- cells. The data imply a role for the single-stranded exonucleases in guarding the genome against mutagenesis by removing excess single-stranded DNA that, if left, leads to SOS induction and PolIV-dependent mutagenesis. Previous results implicated PolIV in E. coli mutagenesis specifically during starvation or antibiotic stresses. Our data imply that PolIV can also promote mutation in growing cells under genome stress due to excess single-stranded DNA.  相似文献   

2.
Escherichia coli dinB encodes the specialized DNA polymerase DinB (Pol IV), which is induced as part of the SOS stress-response system and functions in translesion synthesis (TLS) to relieve the replicative Pol III that is stalled at DNA lesions. As the number of DinB molecules, even in unstressed cells, is greater than that required to accomplish TLS, it is thought that dinB plays some additional physiological role. Here, we overexpressed dinB under the tightly regulable arabinose promoter and looked for a distinct phenotype. Upon induction of dinB expression, progression of the replication fork was immediately inhibited at random genomic positions, and the colony-forming ability of the cells was reduced. Overexpression of mutated dinB alleles revealed that the structural requirements for these two inhibitory effects and for TLS were distinct. The extent of in vivo inhibition displayed by a mutant DinB matched the extent of its in vitro impedance, at near-physiological concentration, of a moving Pol III. We suggest that DinB targets Pol III, thereby acting as a brake on replication fork progression. Because the brake operates when cells have excess DinB, as they do under stress conditions, it may serve as a checkpoint that modulates replication to safeguard genome stability.  相似文献   

3.
The SOS response is a DNA damage response pathway that serves as a general safeguard of genome integrity in bacteria. Extensive studies of the SOS response in Escherichia coli have contributed to establishing the key concepts of cellular responses to DNA damage. However, how the SOS response impacts on the dynamics of DNA replication fork movement remains unknown. We found that inducing the SOS response decreases the mean speed of individual replication forks by 30–50% in E. coli cells, leading to a 20–30% reduction in overall DNA synthesis. dinB and recA belong to a group of genes that are upregulated during the SOS response, and encode the highly conserved proteins DinB (also known as DNA polymerase IV) and RecA, which, respectively, specializes in translesion DNA synthesis and functions as the central recombination protein. Both genes were independently responsible for the SOS-dependent slowdown of replication fork progression. Furthermore, fork speed was reduced when each gene was ectopically expressed in SOS-uninduced cells to the levels at which they are expressed in SOS-induced cells. These results clearly indicate that the increased expression of dinB and recA performs a novel role in restraining the progression of an unperturbed replication fork during the SOS response.  相似文献   

4.
Rudolph CJ  Upton AL  Lloyd RG 《DNA Repair》2008,7(9):1589-1602
In dividing cells, the stalling of replication fork complexes by impediments to DNA unwinding or by template imperfections that block synthesis by the polymerase subunits is a serious threat to genomic integrity and cell viability. What happens to stalled forks depends on the nature of the offending obstacle. In UV-irradiated Escherichia coli cells DNA synthesis is delayed for a considerable period, during which forks undergo extensive processing before replication can resume. Thus, restart depends on factors needed to load the replicative helicase, indicating that the replisome may have dissociated. It also requires the RecFOR proteins, which are known to load RecA recombinase on single-stranded DNA, implying that template strands are exposed. To gain a further understanding of how UV irradiation affects replication and how replication resumes after a block, we used fluorescence microscopy and BrdU or radioisotope labelling to examine chromosome replication and cell cycle progression. Our studies confirm that RecFOR promote efficient reactivation of stalled forks and demonstrate that they are also needed for productive replication initiated at the origin, or triggered elsewhere by damage to the DNA. Although delayed, all modes of replication do recover in the absence of these proteins, but nascent DNA strands are degraded more extensively by RecJ exonuclease. However, these strands are also degraded in the presence of RecFOR when restart is blocked by other means, indicating that RecA loading is not sufficient to stabilise and protect the fork. This is consistent with the idea that RecA actively promotes restart. Thus, in contrast to eukaryotic cells, there may be no factor in bacterial cells acting specifically to stabilise stalled forks. Instead, nascent strands may be protected by the simple expedient of promoting restart. We also report that the efficiency of fork reactivation is not affected in polB mutants.  相似文献   

5.
Replication fork arrest can cause DNA double-strand breaks (DSBs). These DSBs are caused by the action of the Holliday junction resolvase RuvABC, indicating that they are made by resolution of Holliday junctions formed at blocked forks. In this work, we study the homologous recombination functions required for RuvABC-mediated breakage in cells deficient for the accessory replicative helicase Rep or deficient for the main Escherichia coli replicative helicase DnaB. We show that, in the rep mutant, RuvABC-mediated breakage occurs in the absence of the homologous recombination protein RecA. In contrast, in dnaBts mutants, most of the RuvABC-mediated breakage depends on the presence of RecA, which suggests that RecA participates in the formation of Holliday junctions at forks blocked by the inactivation of DnaB. This action of RecA does not involve the induction of the SOS response and does not require any of the recombination proteins essential for the presynaptic step of homologous recombination, RecBCD, RecF or RecO. Consequently, our observations suggest a new function for RecA at blocked replication forks, and we propose that RecA acts by promoting homologous recombination without the assistance of known presynaptic proteins.  相似文献   

6.
7.
We report that the SOS response is induced in Escherichia coli by infection with mutant filamentous phage that are defective in initiation of the complementary (minus)-strand synthesis. One such mutant, R377, which lacks the entire region of the minus-strand origin, failed to synthesize any detectable amount of primer RNA for minus-strand synthesis. In addition, the rate of conversion of parental single-stranded DNA of the mutant to the double-stranded replicative form in infected cells was extremely slow. Upon infection, R377 induced the SOS response in the cell, whereas the wild-type phage did not. The SOS induction was monitored by (i) induction of beta-galactosidase in a strain carrying a dinD::lacZ fusion and (ii) increased levels of RecA protein. In addition, cells infected with R377 formed filaments. Another deletion mutant of the minus-strand origin, M13 delta E101 (M. H. Kim, J. C. Hines, and D. S. Ray, Proc. Natl. Acad. Sci. USA 78:6784-6788, 1981), also induced the SOS response in E. coli. M13Gori101 (D. S. Ray, J. C. Hines, M. H. Kim, R. Imber, and N. Nomura, Gene 18:231-238, 1982), which is a derivative of M13 delta E101 carrying the primase-dependent minus-strand origin of phage G4, did not induce the SOS response. These observations indicate that single-stranded DNA by itself induces the SOS response in vivo.  相似文献   

8.
The SOS genes of Escherichia coli, which include many DNA repair genes, are induced by DNA damage. Although the central biochemical event in induction, activation of RecA protein through binding of single-stranded DNA and ATP to promote cleavage of the LexA repressor, is known, the cellular event that provides this activation following DNA damage has not been well understood. We provide evidence here that the major pathway of induction after damage by a typical agent, ultraviolet light, requires an active replication fork; this result supports the model that DNA replication leaves gaps where elongation stops at damage-induced lesions, and thus provides the single-stranded DNA that activates RecA protein. In order to detect quantitatively the immediate product of the inducing signal, activated RecA protein, we have designed an assay to measure the rate of disappearance of intact LexA repressor. With this assay, we have studied the early phase of the induction process. LexA cleavage is detectable within minutes after DNA damage and occurs in the absence of protein synthesis. By following the reaccumulation of LexA in the cell, we detect repair of DNA and the disappearance of the inducing signal. Using this assay, we have measured the LexA content of wild-type and various mutant cells, characterized the kinetics and conditions for development of the inducing signal after various inducing treatments and, finally, have shown the requirement for DNA replication in SOS induction by ultraviolet light.  相似文献   

9.
Special mechanisms of mutation are induced during growth-limiting stress and can generate adaptive mutations that permit growth. These mechanisms may provide improved models for mutagenesis in antibiotic resistance, evolution of pathogens, cancer progression and chemotherapy resistance. Stress-induced reversion of an Escherichia coli episomal lac frameshift allele specifically requires DNA double-strand-break-repair (DSBR) proteins, the SOS DNA-damage response and its error-prone DNA polymerase, DinB. We distinguished two possible roles for the DSBR proteins. Each might act solely upstream of SOS, to create single-strand DNA that induces SOS. This could upregulate DinB and enhance mutation globally. Or any or all of them might function other than or in addition to SOS promotion, for example, directly in error-prone DSBR. We report that in cells with SOS genes derepressed constitutively, RecA, RuvA, RuvB, RuvC, RecF, and TraI remain required for stress-induced mutation, demonstrating that these proteins act other than via SOS induction. RecA and TraI also act by promoting SOS. These and additional results with hyper-mutating recD and recG mutants support roles for these proteins via error-prone DSBR. Such mechanisms could localize stress-induced mutagenesis to small genomic regions, a potentially important strategy for adaptive evolution, both for reducing additional deleterious mutations in rare adaptive mutants and for concerted evolution of genes.  相似文献   

10.
Escherichia coli DNA polymerase III (Pol III) is one of the best studied replicative DNA polymerases. Here we report the properties of an E. coli mutant that lacks one of the subunits of the Pol III clamp loader complex, Psi (psi), as a result of the complete inactivation of the holD gene. We show that, in this mutant, chronic induction of the SOS response in a RecFOR-dependent way leads to lethality at high temperature. The SOS-induced proteins that are lethal in the holD mutant are the specialized DNA polymerases Pol II and Pol IV, combined with the division inhibitor SfiA. Prevention of SOS induction or inactivation of Pol II, Pol IV and SfiA encoding genes allows growth of the holD mutant, although at a reduced rate compared to a wild-type cell. In contrast, the SOS-induced Pol V DNA polymerase does not participate to the lethality of the holD mutant. We conclude that: (i) Psi is essential for efficient replication of the E. coli chromosome; (ii) SOS-induction of specialized DNA polymerases can be lethal in cells in which the replicative polymerase is defective, and (iii) specialized DNA polymerases differ in respect to their access to inactivated replication forks.  相似文献   

11.
RecA is central to maintaining genome integrity in bacterial cells. Despite the near-ubiquitous conservation of RecA in eubacteria, the pathways that facilitate RecA loading and repair center assembly have remained poorly understood in Bacillus subtilis. Here, we show that RecA rapidly colocalizes with the DNA polymerase complex (replisome) immediately following DNA damage or damage-independent replication fork arrest. In Escherichia coli, the RecFOR and RecBCD pathways serve to load RecA and the choice between these two pathways depends on the type of damage under repair. We found in B. subtilis that the rapid localization of RecA to repair centers is strictly dependent on RecO and RecR in response to all types of damage examined, including a site-specific double-stranded break and damage-independent replication fork arrest. Furthermore, we provide evidence that, although RecF is not required for RecA repair center formation in vivo, RecF does increase the efficiency of repair center assembly, suggesting that RecF may influence the initial stages of RecA nucleation or filament extension. We further identify single-stranded DNA binding protein (SSB) as an additional component important for RecA repair center assembly. Truncation of the SSB C terminus impairs the ability of B. subtilis to form repair centers in response to damage and damage-independent fork arrest. With these results, we conclude that the SSB-dependent recruitment of RecOR to the replisome is necessary for loading and organizing RecA into repair centers in response to DNA damage and replication fork arrest.  相似文献   

12.
Kai M  Wang TS 《Mutation research》2003,532(1-2):59-73
Replication mutants often exhibit a mutator phenotype characterized by point mutations, single base frameshifts, and the deletion or duplication of sequences flanked by homologous repeats. Mutation in genes encoding checkpoint proteins can significantly affect the mutator phenotype. Here, we use fission yeast (Schizosaccharomyces pombe) as a model system to discuss the checkpoint responses to replication perturbations induced by replication mutants. Checkpoint activation induced by a DNA polymerase mutant, aside from delay of mitotic entry, up-regulates the translesion polymerase DinB (Polkappa). Checkpoint Rad9-Rad1-Hus1 (9-1-1) complex, which is loaded onto chromatin by the Rad17-Rfc2-5 checkpoint complex in response to replication perturbation, recruits DinB onto chromatin to generate the point mutations and single nucleotide frameshifts in the replication mutator. This chain of events reveals a novel checkpoint-induced tolerance mechanism that allows cells to cope with replication perturbation, presumably to make possible restarting stalled replication forks.Fission yeast Cds1 kinase plays an essential role in maintaining DNA replication fork stability in the face of DNA damage and replication fork stalling. Cds1 kinase is known to regulate three proteins that are implicated in maintaining replication fork stability: Mus81-Eme1, a hetero-dimeric structure-specific endonuclease complex; Rqh1, a RecQ-family helicase involved in suppressing inappropriate recombination during replication; and Rad60, a protein required for recombinational repair during replication. These Cds1-regulated proteins are thought to cooperatively prevent mutagenesis and maintain replication fork stability in cells under replication stress. These checkpoint-regulated processes allow cells to survive replication perturbation by preventing stalled replication forks from degenerating into deleterious DNA structures resulting in genomic instability and cancer development.  相似文献   

13.
In Escherichia coli, the level of the initiator protein DnaA is limiting for initiation of replication at oriC. A high-affinity binding site for DnaA, datA, plays an important role. Here, the effect of extra datA sites was studied. A moderate increase in datA dosage ( approximately fourfold) delayed initiation of replication and cell division, but increased the rate of replication fork movement about twofold. At a further increase in the datA gene dosage, the SOS response was induced, and incomplete rounds of chromosome replication were detected. Overexpression of DnaA protein suppressed the SOS response and restored normal replication timing and rate of fork movement. In the presence of extra datA sites, cells showed a dependency on PriA and RecA proteins, indicating instability of the replication fork. The results suggest that wild-type replication fork progression normally includes controlled pausing, and that this is a prerequisite for normal replication fork function.  相似文献   

14.
Bacteriophage phiX174 cannot grow in a temperature-sensitive dnaE (DNA polymerase III) mutant of Escherichia coli C at the nonpermissive temperature. The inability to grow is the result of inhibition of virus DNA synthesis. The synthesis of the parental replicative form is unaffected, but the replication of the replicative form and the synthesis of the single-stranded virus DNA are inhibited.  相似文献   

15.
The replicative DNA helicases can unwind DNA in the absence of polymerase activity in vitro. In contrast, replicative unwinding is coupled with DNA synthesis in vivo. The temperature-sensitive yeast polymerase alpha/primase mutants cdc17-1, pri2-1 and pri1-m4, which fail to execute the early step of DNA replication, have been used to investigate the interaction between replicative unwinding and DNA synthesis in vivo. We report that some of the plasmid molecules in these mutant strains became extensively negatively supercoiled when DNA synthesis is prevented. In contrast, additional negative supercoiling was not detected during formation of DNA initiation complex or hydroxyurea replication fork arrest. Together, these results indicate that the extensive negative supercoiling of DNA is a result of replicative unwinding, which is not followed by DNA synthesis. The limited number of unwound plasmid molecules and synthetic lethality of polymerase alpha or primase with checkpoint mutants suggest a checkpoint regulation of the replicative unwinding. In concordance with this suggestion, we found that the Tof1/Csm3/Mrc1 checkpoint complex interacts directly with the MCM helicase during both replication fork progression and when the replication fork is stalled.  相似文献   

16.
Cromie GA  Millar CB  Schmidt KH  Leach DR 《Genetics》2000,154(2):513-522
A 246-bp imperfect palindrome has the potential to form hairpin structures in single-stranded DNA during replication. Genetic evidence suggests that these structures are converted to double-strand breaks by the SbcCD nuclease and that the double-strand breaks are repaired by recombination. We investigated the role of a range of recombination mutations on the viability of cells containing this palindrome. The palindrome was introduced into the Escherichia coli chromosome by phage lambda lysogenization. This was done in both wt and sbcC backgrounds. Repair of the SbcCD-induced double-strand breaks requires a large number of proteins, including the components of both the RecB and RecF pathways. Repair does not involve PriA-dependent replication fork restart, which suggests that the double-strand break occurs after the replication fork has passed the palindrome. In the absence of SbcCD, recombination still occurs, probably using a gap substrate. This process is also PriA independent, suggesting that there is no collapse of the replication fork. In the absence of RecA, the RecQ helicase is required for palindrome viability in a sbcC mutant, suggesting that a helicase-dependent pathway exists to allow replicative bypass of secondary structures.  相似文献   

17.
The mechanism of DNA replication in ultraviolet (UV)-irradiated Escherichia coli is proposed. Immediately after UV exposure, the replisome aided by single-strand DNA-binding protein (SSB) can proceed past UV-induced pyrimidine dimers without insertion of nucleotides. Polymerisation eventually resumes somewhere downstream of the dimer sites. Due to the limited supply of SSB, only a few dimers can be bypassed in this way. Nevertheless, this early DNA synthesis is of great biological importance because it generates single-stranded DNA regions. Single-stranded DNA can bind and activate RecA protein, thus leading to induction of the SOS response. During the SOS response, the cellular level of RecA protein increases dramatically. Due to the simultaneous increase in the concentration of ATP, RecA protein achieves the high-affinity state for single-stranded DNA. Therefore it is able to displace DNA-bound SSB. The cycling of SSB on and off DNA enables the replisome to bypass a large number of dimers at late post-UV times. During this late replication, the stoichiometric amounts of RecA protein needed for recombination are involved in the process of postreplication repair.  相似文献   

18.
The single-stranded DNA-binding protein of Escherichia coli.   总被引:17,自引:2,他引:15       下载免费PDF全文
The single-stranded DNA-binding protein (SSB) of Escherichia coli is involved in all aspects of DNA metabolism: replication, repair, and recombination. In solution, the protein exists as a homotetramer of 18,843-kilodalton subunits. As it binds tightly and cooperatively to single-stranded DNA, it has become a prototypic model protein for studying protein-nucleic acid interactions. The sequences of the gene and protein are known, and the functional domains of subunit interaction, DNA binding, and protein-protein interactions have been probed by structure-function analyses of various mutations. The ssb gene has three promoters, one of which is inducible because it lies only two nucleotides from the LexA-binding site of the adjacent uvrA gene. Induction of the SOS response, however, does not lead to significant increases in SSB levels. The binding protein has several functions in DNA replication, including enhancement of helix destabilization by DNA helicases, prevention of reannealing of the single strands and protection from nuclease digestion, organization and stabilization of replication origins, primosome assembly, priming specificity, enhancement of replication fidelity, enhancement of polymerase processivity, and promotion of polymerase binding to the template. E. coli SSB is required for methyl-directed mismatch repair, induction of the SOS response, and recombinational repair. During recombination, SSB interacts with the RecBCD enzyme to find Chi sites, promotes binding of RecA protein, and promotes strand uptake.  相似文献   

19.
Translesion replication is carried out in Escherichia coli by the SOS-inducible DNA polymerase V (UmuC), an error-prone polymerase, which is specialized for replicating through lesions in DNA, leading to the formation of mutations. Lesion bypass by pol V requires the SOS-regulated proteins UmuD' and RecA and the single-strand DNA-binding protein (SSB). Using an in vitro assay system for translesion replication based on a gapped plasmid carrying a site-specific synthetic abasic site, we show that the assembly of a RecA nucleoprotein filament is required for lesion bypass by pol V. This is based on the reaction requirements for stoichiometric amounts of RecA and for single-stranded gaps longer than 100 nucleotides and on direct visualization of RecA-DNA filaments by electron microscopy. SSB is likely to facilitate the assembly of the RecA nucleoprotein filament; however, it has at least one additional role in lesion bypass. ATPgammaS, which is known to strongly increase binding of RecA to DNA, caused a drastic inhibition of pol V activity. Lesion bypass does not require stoichiometric binding of UmuD' along RecA filaments. In summary, the RecA nucleoprotein filament, previously known to be required for SOS induction and homologous recombination, is also a critical intermediate in translesion replication.  相似文献   

20.
The SOS response in Escherichia coli results in the coordinately induced expression of more than 40 genes which occurs when cells are treated with DNA-damaging agents. This response is dependent on RecA (coprotease), LexA (repressor), and the presence of single-stranded DNA (ssDNA). A prerequisite for SOS induction is the formation of a RecA-ssDNA filament. Depending on the DNA substrate, the RecA-ssDNA filament is produced by either RecBCD, RecFOR, or a hybrid recombination mechanism with specific enzyme activities, including helicase, exonuclease, and RecA loading. In this study we examined the role of RecA loading activity in SOS induction after UV irradiation. We performed a genetic analysis of SOS induction in strains with a mutation which eliminates RecA loading activity in the RecBCD enzyme (recB1080 allele). We found that RecA loading activity is essential for SOS induction. In the recB1080 mutant RecQ helicase is not important, whereas RecJ nuclease slightly decreases SOS induction after UV irradiation. In addition, we found that the recB1080 mutant exhibited constitutive expression of the SOS regulon. Surprisingly, this constitutive SOS expression was dependent on the RecJ protein but not on RecFOR, implying that there is a different mechanism of RecA loading for constitutive SOS expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号