首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Manila clam, Ruditapes philippinarum can become infected by the bacterium Vibrio tapetis which causing the Brown Ring Disease along North European Atlantic coasts. Variations in clam immune parameters have been reported in clam challenged with V. tapetis but no studies have been done on Nitric Oxide (NO) production. NO is a toxic agent to pathogens produced mostly by immune cells such as hemocytes in invertebrates. In this study, we demonstrated that NO production in hemolymph and extrapallial fluid of clams is dose dependent and increases with incubation time with V. tapetis. Moreover, the augmentation of NO production seems to be directly correlated to cell rounding and to the loss of pseudopods-forming capacity of hemocytes during the infection process.  相似文献   

2.
As other marine and land mollusks, mussels have special cells in charge of the immune function called hemocytes. The activation of these cells leads to a series of events that end up in phagocytosis and in secretion of digestive enzymes that eliminate the pathogen. The production of nitric oxide is among the early activation processes. Contrary to what happens in cells of vertebrates and of other species of mollusks, in hemocytes of Mytilus galloprovincialis, LPS did not induce secretion of NO to the medium. However, human IL-2 provoked an important increase in NO production. The maximal synthesis of NO was detected after the hemocytes were incubated with the cytokine for 24h. In both stimulated and non-stimulated cells, Western blotting showed the presence of a protein of 130kDa, recognized by anti-mouse iNOS. Therefore, the higher production of NO can only be explained as a direct action of some effector upon the nitric oxide synthetase. NO production decreased by the action of H-89, a powerful inhibitor of the cAMP-dependent protein kinase (PKA). This suggests the involvement of PKA in the pathway of NO synthesis.  相似文献   

3.
4.
Nitric oxide production by the hemocytes of the last instar larvae and sessile pharate prepupa of Galleria mellonella (Lepidoptera: Pyralidae) was demonstrated in vitro in response to preparations of bacterial lipopolysaccharide (LPS) from Escherichia coli using the Griess reaction. Augmented, dose dependent nitric oxide production was observed in the pharate prepupal hemocytes compared with larval hemocytes. This was partially reversed in a dose dependent manner with S-methyl thiourea (SMT), a specific inhibitor of inducible nitric oxide synthase (iNOS). A decrease in NO production was also observed when non-selective inhibitors such as N(G)-nitro-L-arginine (L-NAME) and N-omega-nitro-L-arginine (L-NNA) were used, albeit the inhibition was not to the extent of SMT. Challenge with the entomopathogenic Gram-negative bacterium Photorhabdus asymbiotica also enhanced NO production by hemocytes of both stages. SMT, alone or in combination with P. asymbiotica significantly decreased levels of NO production. However, it was observed that phenoloxidase activity (a cascade for innate immune responses) was independent of NO production stimulation. NO donors, S-nitroso-N-acetyl-penicillamine (SNAP) and diethylenetriamine NO adduct (DETA/NO) at various concentrations (100-500 microM) resulted in the lysis of hemocytes dose dependently. The nitrite production in these cases was however similar to LPS stimulation (10 microg/mL) and 1.5-3 fold lower than those observed upon P. asymbiotica (2.5 x 10(7) cfu/mL) stimulation. Survival analysis (Kaplan-Meier) following injection of P. asymbiotica alone or in combination with SMT revealed that only 12.5% (median survival 25.5 h) of co-injected larvae of G. mellonella survived in comparison to 28.6% (median survival 29 h) survivors in P. asymbiotica alone-injected groups till the end of the study. In contrast, co-injected pharate prepupa survived longer (median survival 28 h) than the P. asymbiotica alone-injected individuals (median survival 24 h); however, both co-injected and P. asymbiotica-injected groups showed 100% mortality at the end of the study. Based on the above, we propose that although NO production is involved in cellular immune responses of this insect to bacterial infection it does not appear to be a part of the signalling pathway that initiates the prophenoloxidase (PPO) cascade, and the extended NO production/overproduction by pharate prepupal hemocytes could result in cytotoxic rather than cytoprotective effects compared with larval hemocytes.  相似文献   

5.
The hemocytes are the cells responsible for the immune response in marine mollusks. The role of NO in processes related to the activation of the hemocytes has turned out evident over the late years. In the case of the mussel Mytilus galloprovincialis Lmk., hemocyte NO basal production varies throughout the year, showing a maximum in summer and a minimum in winter. IL-2 reverts the low winter NO basal production through a process mediated by cAMP-dependent protein kinase and by an apparent side effect of protein kinase C. The seasonal variation of NO production in the presence of the PKC inhibitor bisindolylmaleimide (BSM) allows suggesting a model in which PKC would modulate the activity of the enzymes responsible for nitric oxide production.  相似文献   

6.
Calcineurin (CN), a multifunctional protein, mediates the immune response through diverse signaling pathways in mammals, while the function of CN in the immune response of molluscan hemocytes still remains unclear. In the present study, we detected the distribution of CN in various tissues and the expression levels of Pf-CNA and Pf-CNB gene in hemocytes of Pinctada fucata. After the preparation of hemocyte monolayers, we checked the response of enzymatic activity of CN, the degradation level of IκBα, the activity of iNOS and the production of NO, and IL-2 to the challenge of lipopolysaccharide (LPS) and cyclosporin A (CsA). CN activity in hemocytes was very sensitive to both the stimulation of LPS and the inhibition of CsA. Most importantly, IκBα degradation in hemocytes was induced by LPS and attenuated by CsA. Consequently, the activity of iNOS was elevated and the production of NO was increased. Additionally, we found that the synthesis of IL-2 was increased by LPS but was apparently weakened by CsA. In vivo bacterial clearance experiments showed that CsA significantly decreased the ability of in vivo bacteria clearance in pearl oyster. All the results revealed, for the first time, that CN mediated the immune response of molluscan hemocytes via activating NF-κB signaling pathway.  相似文献   

7.
In the present study, the ability of mussel (Mytilus galloprovincialis) hemocytes to produce nitric oxide (NO) in response to phorbol myristate acetate (PMA) was determined using the Griess reaction. Significant NO production was found in these cells in response to PMA. This stimulation was reversed in the presence of the NO synthase inhibitor, N(G)-methyl-L-arginine (L-NMMA). Moreover, the effect of the pre-incubation of hemocytes with NO was also determined on phagocytic immune functions of mussel hemocytes using two NO donors, glycerin trinitrate (GTN) and S-nitroso-N-acetyl-penicillamine (SNAP). In the case of GTN, a visible cytotoxic effect of the compound at the higher doses was observed. Those GTN concentrations that did not have a negative effect on hemocyte viability did not produce sufficient NO to significantly alter the chemiluminescent response to zymosan in all cases, nor the ability of hemocytes to phagocytose bacteria (Escherichia coli). SNAP, however, did not affect cell viability at either of the concentrations used and produced NO levels up to 13-fold higher than controls after 2 h of incubation. In this case, NO exogenously produced by SNAP significantly inhibited the chemiluminescent response of mussel hemocytes, whereas it did not have a significant effect on the capability of these cells to phagocytose bacteria.  相似文献   

8.
Although insects lack the adaptive immune response of the mammalians, they manifest effective innate immune responses that include both cellular and humoral components. Cellular responses are mediated by hemocytes and humoral responses include the activation of proteolytic cascades that initiate many events, including NO production. In this work, we determined NO production in Chrysomya megacephala hemolymph and hemocytes after yeast inoculation. Assays were performed with non-infected controls (NIL), saline-injected larvae (SIL) or larvae injected with Saccharomyces cerevisiae (YIL). The hemolymph of injected groups was collected 0.5, 1, 2, 4, 12, 24 or 48h post-injection. NO levels in SIL were comparable to those measured in NIL until 12h, which might be considered the basal production, increasing at 24 and 48h post-injection, probably in response to the increased larval fragility after cuticle rupture. YIL exhibited significantly higher levels of NO than were found in other groups, peaking at 24h. l-NAME and EDTA caused a significant reduction of NO production in YIL at this time, suggesting the activity of a Ca(2+)-dependent NOS. Plasmatocytes and granular cells phagocytosed the yeasts. Plasmatocytes initiated the nodule formation and granular cells were the only hemocyte type to produce NO. These results permit us to conclude that yeasts induced augmented NO production in C. megacephala hemolymph and granular cells are the hemocyte type involved with the generation of this molecule.  相似文献   

9.
Ascidian hemolymph contains various types of blood cells (hemocytes), which are believed to be involved in defense mechanisms. We have studied nitric-oxide (NO) synthase activity in hemocytes of the ascidian Styela plicata after exposure to lipopolysaccharide (LPS). To investigate which cell types are involved in NO production, we first identified, by electron microscopy, the types of hemocytes previously described, mainly by light microscopy, by others. Five types of blood cells could be recognized in the hemolymph: granulocytes, hemoblasts, lymphocyte-like cells, morula cells, and pigment cells. The lymphocyte-like cells produced the most NO. In agreement with studies of other invertebrates, nitrite generation did not change after LPS stimulation in assays in vitro, under either different concentrations of LPS or different time periods. Therefore, we performed an in vivo assay by injecting a known quantity of Escherichia coli into the tunic of the ascidians in order to investigate possible differences in NO levels. No increase of NO occurred accompanying the inflammatory reaction suggesting that another molecule in the pathway was involved. We found that nuclear factor κB (NFκB) was activated. Since NFκB is involved in the production of many substances related to immune responses, additional molecules might also be generated in response to E. coli infection. These observations may improve our understanding of the reaction of animals to eutrophic conditions.  相似文献   

10.
Mao YF  Zhang YL  Yu QH  Jiang YH  Wang XW  Yao Y  Huang JL 《Nitric oxide》2012,27(3):137-142
Stress-related hormone norepinephrine (NE) displayed diverse effects on immune system including macrophages, which influenced many kinds of inflammatory diseases. Nitric oxide (NO) from activated macrophages played an important role in inflammatory diseases. In this study, we investigated under chronic restraint stress how NE influenced the joint swell of Complete Freund's Adjuvant (CFA)-induced arthritis of rats and whether NE regulated macrophage's production of NO through influencing phosphorylation of protein kinases C (PKC). The results showed chronic restraint stress exacerbated paw swell of rats with arthritis. Inhibitor of inducible nitric oxide synthase, S-methylisothiourea (SMT), and 6-hydroxydopamine (6-OHDA) could counteract the effect of restraint stress on arthritis. NE, NO and endotoxin in plasma of rats underwent restraint were improved significantly. In vitro experiments, NE could promote macrophage to produce more NO and iNOS when macrophage was activated by lipopolysaccharide (LPS). This effect could be inhibited by α adrenergic antagonist phentolamine. Nevertheless, through α receptor NE could promote the phosphorylation of PKC and PKC inhibitor staurosporine could counteract NE's enhancive effect on production of NO and iNOS of macrophages. This study revealed that NE could exacerbate arthritic joint swell through promoting NO production, which was in α receptor dependent way through enhancing phosphorylation of PKC for NE to enhance the iNOS expression of activated macrophage.  相似文献   

11.
12.
In mussel (Mytilus sp.) hemocytes, differential functional responses to injection with different types of live and heat-killed Vibrio species have been recently demonstrated.In this work, responses of Mytilus hemocytes to heat-killed Vibrio splendidus LGP32 and the mechanisms involved were investigated in vitro and the results were compared with those obtained with Vibrio anguillarum (ATCC 19264). Adhesion of hemocytes after incubation with bacteria was evaluated by flow cytometry: both total hemocyte counts (THC) and percentage of hemocyte sub-populations were determined in non-adherent cells. Functional parameters such as lysosomal membrane stability, lysozyme release, extracellular ROS production and NO production were evaluated, as well as the phosphorylation state of the stress-activated p38 MAPK and PKC. Neither Vibrio affected total hemocyte adhesion, while both induced similar lysosomal destabilization and NO production. However, V. splendidus decreased adhesion of large granulocytes, induced rapid and persistent lysozyme release and stimulated extracellular ROS production: these effects were associated with persistent activation of p38 MAPK and PKC. In contrast, V. anguillarum decreased adhesion of large semigranular hemocytes and increased that of hyalinocytes, had no effect on the extracellular ROS production, and induced significantly lower lysozyme release and phosphorylation of p-38 MAPK and PKC than V. splendidus. These data reinforced the existence of specific interactions between mussel hemocytes and V. splendidus LGP32 and suggest that this Vibrio strain affects bivalve hemocytes through disregulation of immune signaling. The results support the hypothesis that responses of bivalve hemocytes to different bacterial stimuli may depend not only on the nature of the stimulus, but also on the cell subtype, thus leading to differential activation of signaling components.  相似文献   

13.
血细胞在动物的免疫防御体系中扮演了重要的角色,尤其是对缺少适应性免疫的无脊椎动物.在这些动物中,血细胞既参与细胞免疫的吞噬、包囊、结节等作用,还参与体液免疫中许多免疫因子的生成与储存.对不同动物类群的血细胞的不同亚群进行区分,是深入了解其免疫机制与血细胞功能的基础.尽管国内外学者利用不同的方法,针对虾类血细胞的不同亚群...  相似文献   

14.
15.
16.
The process of hemocyte adhesion to extracellular matrix (ECM) proteins plays a crucial role in cell immunity. In most of these interactions between ECM proteins and cells, integrins are involved. The results of the present study showed that incubation of Mytilus galloprovincialis hemocytes with 17β-estradiol caused significant increased adhesion of hemocytes to ECM proteins and specifically to laminin-1, collagen IV and oxidized collagen IV, in relation to control cells. The adhesion of hemocytes to oxidized collagen was significantly higher than to either collagen IV or to laminin-1. In accordance with this, inhibition of either NADPH oxidase or nitric oxide (NO) synthase attenuated 17β-estradiol effect on hemocyte adhesion, suggesting that the high levels of free radicals, produced after 17β-estradiol effect, could contribute to the high adhesion of hemocytes to laminin-1 and collagen IV. The implication of ROS was further confirmed by the use of the oxidant rotenone, which caused elevation of cell adhesion in relation to control and by the antioxidant NAC which attenuated 17β-estradiol effect. The mechanism of 17β-estradiol induced adhesion to laminin-1, collagen IV and oxidized collagen IV involves a large number of intracellular components, as Na+/H+ exchanger (NHE), all isoforms of protein kinase C (PKC), phosphatidylinositol-3-kinase (PI3K) and c-jun N-terminal kinase (JNK) as well as alpha2 integrin subunit. Maintenance of high cyclic adenosine-3'-5'-monophosphate (cAMP) levels caused non significant higher adhesion of hemocytes to ECM proteins in relation to control cells. Our results showed that 17β-estradiol caused a significant increase in α? integrin subunit levels, which was reduced after inhibition of NHE, PI3K, PKC, NO synthase, NADPH oxidase and JNK. In addition, our results showed that apart from 17β-estradiol, high cAMP and high ROS levels caused significantly higher induction of α? integrin subunit levels in relation to control. Our results imply a potential involvement of cAMP in immune responses of Mytilus hemocytes, which needs further investigation.  相似文献   

17.
采用第三脑室注入CRF 及N E 的方法观察对高原鼠兔(Ochotona curzoniae) 体液免疫的影响。结果表明: 第三脑室注入CRF 1 Lg 可抑制抗体生成, 比对照下降29.2%(P<0.01) , 而在第三脑室注入CRF 受体阻断剂α-helical CRF2 (9-41) 50 Lg 后再注入CRF 1 Lg 则可取消CRF 对抗体生成的抑制作用; 第三脑室注入5 nM NE, 与对照相比, 抗体水平下降38.85%(P < 0.01) , 而使用62OHDA 损毁脑内交感神经系统则使抗体水平升高24.31% (P <0.01)。这些结果表明, 高原鼠兔中枢CRF 升高对体液免疫有抑制作用, 中枢交感神经系统对体液免疫也具有紧张性抑制作用。  相似文献   

18.
We determined the biochemical characteristics of nitric oxide synthase (NOS) in hemocytes of the crayfish Procambarus clarkii and investigated the roles of hemocyte-derived NO in host defense. Biochemical analysis indicated the presence of a Ca2+ -independent NOS activity, which was elevated by lipopolysaccharide (LPS) treatment. When bacteria (Staphylococcus aureus) and hemocytes were co-incubated, adhesion of bacteria to hemocytes was observed. NO donor sodium nitroprusside (SNP) significantly increased the numbers of hemocytes to which bacteria adhered. Similarly, LPS elicited bacterial adhesion and the LPS-induced adhesion was prevented by NOS inhibitor NG-monomethyl-L-arginine (L-NMMA). Finally, plate count assay demonstrated that addition of LPS to the hemocytes/bacteria co-incubation resulted in a significant decrease in bacterial colony forming unit (CFU), and that L-NMMA reversed the decreasing effect of LPS on CFU. The combined results demonstrate the presence of a Ca2+ -independent LPS-inducible NOS activity in crayfish hemocytes and suggest that hemocyte-derived NO is involved in promoting bacterial adhesion to hemocytes and enhancing bactericidal activity of hemocytes.  相似文献   

19.
The phagocytic activity of Mytilus galloprovincialis hemocytes is thought to be associated with NADPH-oxidase activity of the plasma membrane, thus producing superoxide anions. Few studies, however, have been devoted to nitric oxide release by these haemocytes. We investigated NO generation in M. galloprovincialis in order to understand its role in the defensive mechanisms of these organisms. The presence of NO-synthase-like enzymatic activity in protein homogenates from M. galloprovincialis hemocytes was revealed by the conversion of radiolabelled L-arginine to L-citrulline. We observed partial inhibition of the luminol-dependent chemiluminescence of stimulated M. galloprovincialis hemocytes by both NO-synthase inhibitors and superoxide dismutase, indicating that peroxynitrite (which results from the reaction between nitric oxide and superoxide anions) partially mediated this chemiluminescence. Furthermore, we confirmed the production of nitric oxide by M. galloprovincialis by highlighting the nitric oxide-synthase-dependence of the nitrate and nitrite production of stimulated hemocytes.  相似文献   

20.
Flavonoids including the aglycones, hesperetin (HT; 5,7,3'-trihydroxy-4'-methoxy-flavanone), and naringenin (NE; 5,7,4'-trihydroxy flavanone) and glycones, hesperidin (HD; 5,7,3'-trihydroxy-4'-methoxy-flavanone 7-rhamnoglucoside) and naringin (NI; 5,7,4'-trihydroxy flavanone 7-rhamno glucoside), were used to examine the importance of rutinose at C7 on the inhibitory effects of flavonoids on lipopolysaccharide (LPS)-induced nitric oxide production in macrophages. Both HT and NE, but not their respective glycosides HD and NI, induced heme oxygenase 1 (HO-1) protein expression in the presence or absence of LPS and showed time and dose-dependent inhibition of LPS-induced nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) expression in RAW264.7, J774A.1, and thioglycolate-elicited peritoneal macrophages. Additive inhibitory effect of an HO-1 inducer hemin and NE or NI on LPS-induced NO production and iNOS expression was identified, and HO enzyme inhibitor tin protoporphyrin (SnPP) attenuated the inhibitory effects of HT, NE, and hemin on LPS-induced NO production. Both NE and HT showed no effect on iNOS mRNA and protein stability in RAW264.7 cells. Removal of rutinose at C7 of HD and NI by enzymatic digestion using hesperidinase (HDase) and naringinase (NIase) produce inhibitory activity on LPS-induced NO production, according to the production of the aglycones, HT and NE, by high-performance liquid chromatography (HPLC) analysis. Furthermore, the amount of NO produced by LPS or lipoteichoic acid (LTA) was significantly reduced in HO-1-overexpressing cells (HO-1/RAW264.7) compared to that in parental cells (RAW264.7). Results of the present study provide scientific evidence to suggest that rutinose at C7 is a negative moiety in flavonoid inhibition of LPS-induced NO production, and that HO-1 is involved in the inhibitory mechanism of flavonoids on LPS-induced iNOS and NO production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号