首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Glucagon-like peptide-1 (GLP-1) influences energy balance by exerting effects on food intake and glucose metabolism, through mechanisms that are partially dependent on the vagal pathway. The aim of this study was to characterize the effects of chronic GLP-1 stimulation on energy homeostasis and glucose metabolism in the absence of vagal innervation Truncal vagotomized (VGX) and sham operated rats (SHAM) received an intraperitoneal GLP-1 infusion (3.5 pmol/kg/min) trough mini-osmotic pumps. To dissect the effects derived from vagal denervation on food intake, an additional group was included consisting of sham operated rats that were PAIR FED to VGX. Food intake and body weight were recorded throughout the experimental period, while the percentage of white and brown adipose tissue, fasting glucose, insulin, gastro-intestinal hormonal profile, hypothalamic, and BAT gene expression were assessed at endpoint. VGX rats had significantly lower food intake, body weight gain, and leptin levels when compared with SHAM rats. Despite having similar body weight, PAIR-FED rats had lower fasting leptin, insulin and insulin resistance, while having higher ghrelin levels than VGX. GLP-1 infusion did not influence food intake or body weight, but was associated with lower leptin levels in VGX and lower pancreatic α-cells ki-67 staining in SHAM. Concluding, this study corroborates that the vagus nerve may modulate whole body energy homeostasis by acting in peripheral signals. Our data suggest that in the absence of vagal or parasympathetic tonus, GLP-1 mediated inhibition of cell proliferation markers in α-cells is prevented, meanwhile leptin suppression, associated with a negative energy balance, is partially overridden.  相似文献   

2.
GLP-1及其受体激动剂Exendin-4是治疗糖尿病的一种理想药物,是近年来新的研究热点之一。近年发现,该类药物可从多个生理角度发挥功能,揭示其临床适应症可能有进一步的扩展空间。对GLP-1及Exendin-4的各种已知和潜在的临床适应症进行了概述,这些适应症除了各型糖尿病外,还包括肥胖症、神经系统和心脏的疾病以及其他各种潜在适应症。  相似文献   

3.
Glucagon-like peptide-1(7-36)amide (GLP-1) is a key insulinotropic hormone with the reported potential to differentiate non-insulin secreting cells into insulin-secreting cells. The short biological half-life of GLP-1 after cleavage by dipeptidylpeptidase IV (DPP IV) to GLP-1(9-36)amide is a major therapeutic drawback. Several GLP-1 analogues have been developed with improved stability and insulinotropic action. In this study, the N-terminally modified GLP-1 analogue, N-acetyl-GLP-1, was shown to be completely resistant to DPP IV, unlike native GLP-1, which was rapidly degraded. Furthermore, culture of pancreatic ductal ARIP cells for 72 h with N-acetyl-GLP-1 indicated a greater ability to induce pancreatic beta-cell-associated gene expression, including insulin and glucokinase. Further investigation of the effects of stable GLP-1 analogues on beta-cell differentiation is required to assess their potential in diabetic therapy.  相似文献   

4.
胰高血糖素样肽1与干细胞定向分化   总被引:2,自引:0,他引:2  
糖尿病已经成为21世纪严重威胁人类健康的疾病之一。胰岛移植被认为是治疗Ⅰ型和部分Ⅱ型糖尿病的最有效方法。然而,供体组织来源的匮乏限制了其应用。随着细胞移植和组织工程的日益发展,干细胞研究为新型胰岛的来源开辟了新的途径。干细胞定向诱导分化的关键是筛选合适的诱导剂以及优化诱导微环境,使干细胞培养微环境尽可能接近体内正常细胞发育分化的微环境,从而有利于干细胞适宜生长及定向分化。最近研究证实,胰高血糖素样肽1(Glucagon- Like PeptideⅠ,GLP-1)在干细胞向胰岛样细胞诱导分化中具有显著作用。因此,为了更好地应用GLP-1在干细胞定向分化中的潜能、促进应用干细胞治疗糖尿病新疗法研究的进程及干细胞定向分化技术逐渐成熟,本文就胰高血糖素样肽-1及它诱导干细胞定向分化胰岛样细胞的研究进展作一阐述。  相似文献   

5.
Gastric inhibitory polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are the two primary incretin hormones secreted from the intestine upon ingestion of glucose or nutrients to stimulate insulin secretion from pancreatic β cells. GIP and GLP-1 exert their effects by binding to their specific receptors, the GIP receptor (GIPR) and the GLP-1 receptor (GLP-1R), which belong to the G-protein coupled receptor family. Receptor binding activates and increases the level of intracellular cAMP in pancreatic β cells, thereby stimulating insulin secretion glucose-dependently. In addition to their insulinotropic effects, GIP and GLP-1 have been shown to preserve pancreatic β cell mass by inhibiting apoptosis of β cells and enhancing their proliferation. Due to such characteristics, incretin hormones have been gaining mush attention as attractive targets for treatment of type 2 diabetes, and indeed incretin-based therapeutics have been rapidly disseminated worldwide. However, despites of plethora of rigorous studies, molecular mechanisms underlying how GIPR and GLP-1R activation leads to enhancement of glucose-dependent insulin secretion are still largely unknown. Here, we summarize the similarities and differences of these two incretin hormones in secretion and metabolism, their insulinotropic actions and their effects on pancreatic β cell preservation. We then try to discuss potential of GLP-1 and GIP in treatment of type 2 diabetes.  相似文献   

6.
Exendin-4 (Ex-4) is a glucagon-like peptide-1 receptor (GLP-1R) agonist that has been used as a drug injected subcutaneously for treatment of type 2 diabetes. Many studies have revealed molecular targets of Ex-4, but its influence on adipokines has not been determined. Our study showed that Ex-4 induced secretion of adiponectin into the culture medium of 3T3-L1 adipocytes. This effect of Ex-4 is due to increased adiponectin mRNA level through the GLP-1R. Both forskolin and 3-isobutyl-1-methylxanthine (IBMX), which may finally elevate cyclic adenosine monophosphate (cAMP) concentration, prevented the induction of adiponectin expression by Ex-4. Moreover, H89, a protein kinase A inhibitor, blocked the effect of Ex-4 on adiponectin. On the other hand, Ex-4 decreased the mRNA levels of inflammatory adipokines. The results indicate that Ex-4 directly promotes adiponectin secretion via the protein kinase A pathway in 3T3-L1 adipocytes and may ameliorate insulin resistance.  相似文献   

7.
The pathogenesis of Huntington disease (HD) is attributed to the misfolding of huntingtin (htt) caused by an expanded polyglutamine (polyQ) domain. Considerable effort has been devoted to identifying molecules that can prevent or reduce htt misfolding and the associated neuropathology. Although overexpression of chaperones is known to reduce htt cytotoxicity in cellular models, only modest protection is seen with Hsp70 overexpression in HD mouse models. Because the activity of Hsp70 is modulated by co-chaperones, an interesting issue is whether the in vivo effects of chaperones on polyQ protein toxicity are dependent on other modulators. In the present study, we focused on BAG1, a co-chaperone that interacts with Hsp70 and regulates its activity. Of htt mice expressing the N171-82Q mutant, we found that male N171-82Q mice show a greater deficit in rotarod performance than female N171-82Q mice. This sex-dependent motor deficit was improved by crossing N171-82Q mice with transgenic mice overexpressing BAG1 in neurons. Transgenic BAG1 also reduces the levels of mutant htt in synaptosomal fraction of male HD mice. Overexpression of BAG1 augmented the effects of Hsp70 by reducing aggregation of mutant htt in cultured cells and improving neurite outgrowth in htt-transfected PC12 cells. These findings suggest that the effects of chaperones on HD pathology are influenced by both their modulators and sex-dependent factors.  相似文献   

8.
GLP-1受体是广泛分布于人体多个组织和器官中的一种G蛋白偶联受体,它参与体内糖代谢的调控,是糖尿病领域的研究热点。GLP-1受体激动剂能够作用于胰岛,调节胰岛素和胰高血糖素的分泌,促进胰岛B细胞增殖并抑制其凋亡;作用于胃肠道,延缓胃排空和抑制糖脂吸收;作用于中枢神经细胞发挥神经保护作用。越来越多的研究发现,GLP-1受体激动剂对肾脏功能具有调节作用。在动物实验中,大鼠给予GLP-1受体激动剂后尿排出量显著增加,尿液中钠离子浓度大幅度升高,此外,钾、碳酸氢等离子的排泄量均有不同程度地增加;同时,肾小球滤过率和肾血流量均明显升高。其作用机制可能涉及两个方面:GLP-1受体激动剂直接作用于肾脏GLP-1受体调节电解质的转运以及作用于肾脏脉管系统影响肾脏血流动力学。本文将对此作用的研究现状做简要综述。  相似文献   

9.
Amino acid mixtures (AAM) are protein substitutes used for phenylketonuria treatment, but their metabolic effects have not been well characterized. The objective of this study was to compare the acute glycemic response to free amino acids (free AA) from AAM with the response to intact protein (iProtein). Male Wistar rats (n = 14) were administered by gavage a bolus of free AA (n = 7) or iProtein as albumin (n = 7) containing equivalent amounts of nitrogen. Blood glucose and insulin levels were measured at baseline and 15, 30, 60 and 120 minutes later, when gut GLP-1 content and pancreatic insulin, GLP-1 receptor and Ki67 expression were quantified at 120 minutes time point. After AAM, glucose area under the curve (free AA vs iProtein; P < 0.01), serum insulin levels at 120 minutes (free AA vs iProtein; P < 0.05), colon GLP-1 content (free AA vs iProtein; P < 0.01), pancreatic GLP-1 receptor (free AA vs iProtein; P < 0.01) and insulin expression (free AA vs iProtein; p < 0.01) were significantly lower as compared with iProtein. AAM increased Ki67 expression in pancreatic islets (free AA vs iProtein; P < 0.05). In conclusion, this study demonstrated that acute response to AAM differs from iProtein and is characterized by a lower glucose excursion, along with a decrease in gut GLP-1 and pancreatic GLP-1 receptor and insulin. This data suggests the modulation of glycemia by free AA is mediated by the incretin axis.  相似文献   

10.
Glucagon-like peptide-1 (GLP-1) stimulates insulin secretion from pancreatic β-cells in a glucose-dependent manner. However, factors other than glucose that regulate the β-cell response to GLP-1 remain poorly understood. In this study, we examined the possible involvement of insulin and receptor tyrosine kinase signaling in regulation of the GLP-1 responsiveness of β-cells. Pretreatment of β-cells with HNMPA, an insulin receptor inhibitor, and AG1478, an epidermal growth factor receptor inhibitor, further increased the cAMP level and Erk phosphorylation in the presence of exendin-4 (exe-4), a GLP-1 agonist. When β-cells were exposed to a high concentration of glucose (25 mM), which stimulates insulin secretion, exe-4-induced cAMP formation declined gradually as exposure time was increased. This decreased cAMP formation was not observed in the presence of HNMPA. HNMPA was able to further increase the exe-4-induced insulin secretion when β-cells were exposed to high glucose for 18 h. Treatment of β-cells with insulin significantly decreased exe-4-induced cAMP formation in a dose-dependent manner. Lowering the phospho-Akt level by HNMPA or LY294002, a PI3K inhibitor, further augmented exe-4-induced cAMP formation and Erk phosphorylation. These results suggest that insulin contributes to fine-tuning of the β-cell response to GLP-1.  相似文献   

11.
12.
The glucagon-like peptide-1 receptor (GLP-1R) belongs to Family B1 of the seven-transmembrane G protein-coupled receptors, and its natural agonist ligand is the peptide hormone glucagon-like peptide-1 (GLP-1). GLP-1 is involved in glucose homeostasis, and activation of GLP-1R in the plasma membrane of pancreatic beta-cells potentiates glucose-dependent insulin secretion. The N-terminal extracellular domain (nGLP-1R) is an important ligand binding domain that binds GLP-1 and the homologous peptide Exendin-4 with differential affinity. Exendin-4 has a C-terminal extension of nine amino acid residues known as the "Trp cage", which is absent in GLP-1. The Trp cage was believed to interact with nGLP-1R and thereby explain the superior affinity of Exendin-4. However, the molecular details that govern ligand binding and specificity of nGLP-1R remain undefined. Here we report the crystal structure of human nGLP-1R in complex with the antagonist Exendin-4(9-39) solved by the multiwavelength anomalous dispersion method to 2.2A resolution. The structure reveals that Exendin-4(9-39) is an amphipathic alpha-helix forming both hydrophobic and hydrophilic interactions with nGLP-1R. The Trp cage of Exendin-4 is not involved in binding to nGLP-1R. The hydrophobic binding site of nGLP-1R is defined by discontinuous segments including primarily a well defined alpha-helix in the N terminus of nGLP-1R and a loop between two antiparallel beta-strands. The structure provides for the first time detailed molecular insight into ligand binding of the human GLP-1 receptor, an established target for treatment of type 2 diabetes.  相似文献   

13.
Q Wei  YQ Sun  J Zhang 《Peptides》2012,37(1):18-24
Lipotoxicity plays an important role in the underlying mechanism of type 2 diabetes mellitus. Prolonged exposure of pancreatic β-cells to elevated concentrations of fatty acid is associated with β-cell apoptosis. Recently, glucagon-like peptide-1 (GLP-1) receptor agonists have been reported to have direct beneficial effects on β-cells, such as anti-apoptotic effects, increased β-cell mass, and improvement of β-cell function. The mechanism of GLP-1 receptor agonists' protection of pancreatic β-cells against lipotoxicity is not completely understood. We investigated whether the GLP-1 receptor agonist exendin-4 promoted cell survival and attenuated palmitate-induced apoptosis in murine pancreatic β-cells (MIN6). Exposure of MIN6 cells to palmitate (0.4mM) for 24h caused a significant increase in cell apoptosis, which was inhibited by exendin-4. Exposure of MIN6 cells to exendin-4 caused rapid activation of protein kinase B (PKB) under lipotoxic conditions. Furthermore, LY294002, a PI3K inhibitor, abolished the anti-lipotoxic effect of exendin-4 on MIN6 cells. Exendin-4 also inhibited the mitochondrial pathway of apoptosis and down-regulated Bax in MIN6 cells. Exendin-4 enhanced glucose-stimulated insulin secretion in the presence of palmitate. Our findings suggest that exendin-4 may prevent lipotoxicity-induced apoptosis in MIN6 cells through activation of PKB and inhibition of the mitochondrial pathway.  相似文献   

14.
Li Y  Zheng X  Tang L  Xu W  Gong M 《Peptides》2011,32(6):1303-1312
The multiple physiological characterizations of glucagon-like peptide-1 (GLP-1) make it a promising drug candidate for the therapy of type 2 diabetes. However, the half-life of GLP-1 is short in vivo due to degradation by dipeptidyl peptidase-IV (DPP-IV) and renal clearance. This indicates that the stabilization of GLP-1 is critical for its utility in drug development. In this study, we developed a cluster of GLP-1 mutants containing an inter-disulfide bond that is predicted to increase the half-life of GLP-1 in vivo. Exendin-4 was also mutated with a disulfide bond similar to the GLP-1 analogs. In this study, the binding capacities of the mutants were determined, the stabilities of the mutants were investigated and the physiological functions of the mutants were compared with those of wild-type GLP-1 and exendin-4 in animals. The results indicated that the mutants remarkably raised the half-life in vivo; they also showed better glucose tolerance and higher HbA1c reduction than GLP-1 and exendin-4 in rodents. These results suggest that GLP-1 and exendin-4 mutants containing disulfide bonds might be utilized as possible potent anti-diabetic drugs in the treatment of type 2 diabetes mellitus.  相似文献   

15.
Insulin secretion from pancreatic β cells is stimulated by glucagon-like peptide-1 (GLP-1), a blood glucose-lowering hormone that is released from enteroendocrine L cells of the distal intestine after the ingestion of a meal. GLP-1 mimetics (e.g., Byetta) and GLP-1 analogs (e.g., Victoza) activate the β cell GLP-1 receptor (GLP-1R), and these compounds stimulate insulin secretion while also lowering levels of blood glucose in patients diagnosed with type 2 diabetes mellitus (T2DM). An additional option for the treatment of T2DM involves the administration of dipeptidyl peptidase-IV (DPP-IV) inhibitors (e.g., Januvia, Galvus). These compounds slow metabolic degradation of intestinally released GLP-1, thereby raising post-prandial levels of circulating GLP-1 substantially. Investigational compounds that stimulate GLP-1 secretion also exist, and in this regard a noteworthy advance is the demonstration that small molecule GPR119 agonists (e.g., AR231453) stimulate L cell GLP-1 secretion while also directly stimulating β cell insulin release. In this review, we summarize what is currently known concerning the signal transduction properties of the β cell GLP-1R as they relate to insulin secretion. Emphasized are the cyclic AMP, protein kinase A, and Epac2-mediated actions of GLP-1 to regulate ATP-sensitive K+ channels, voltage-dependent K+ channels, TRPM2 cation channels, intracellular Ca2+ release channels, and Ca2+-dependent exocytosis. We also discuss new evidence that provides a conceptual framework with which to understand why GLP-1R agonists are less likely to induce hypoglycemia when they are administered for the treatment of T2DM.  相似文献   

16.
GLP-1(1~37) 诱导人类胚胎小肠 上皮细胞表达胰岛素   总被引:1,自引:0,他引:1  
胶原酶消化法分离培养人类胚胎小肠的上皮细胞,应用胰高血糖素样肽 1 (glucagon-like peptide 1 (1~37),GLP-1) 诱导小肠上皮细胞向胰岛素分泌细胞分化,免疫组化方法对分化的和未分化的细胞进行鉴定, RT-PCR 检测胰岛内分泌细胞相关基因的表达 . 结果成功分离培养出人类小肠上皮细胞,免疫组化证明细胞表达小肠上皮的标志物细胞角蛋白 18 和 19 ,同时细胞也表达胰高血糖素和生长抑素,但无胰岛素表达 . GLP-1(1~37) 诱导小肠上皮细胞 6 天, RT-PCR 显示胰十二指肠同源异型基因盒 1 (pancreatic duodenal homeobox-1 , PDX-1) 、葡萄糖转运蛋白 2 (glucose transporter-2 , GLUT-2) 和胰岛素基因均有表达,免疫组化也检测到胰岛素阳性小肠上皮细胞 . 未用 GLP-1(1~37) 诱导小肠上皮细胞为对照的 RT-PCR 显示 PDX-1 、 GLUT-2 也表达,但无胰岛素 mRNA 和蛋白质的表达 . 研究表明 GLP-1(1~37) 能够诱导人类胚胎小肠上皮细胞向胰岛素分泌细胞分化 .  相似文献   

17.
18.
The incretin hormones, glucose dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1), potentiate insulin secretion and are responsible for the majority of insulin secretion that occurs after a meal. They may also, however, have a fundamental role in pancreatic beta cell development and function, independently of their role in potentiating insulin secretion after a meal. This has led to observations that a loss of GIP or GLP-1 action affects normal beta cell function, however each one of the incretin hormones may compensate when the action of the other is lost and therefore the overall impact of the incretin hormones on beta cell function is not known. We therefore utilized a mouse line deficient in both the GLP-1 and GIP receptor genes, the double incretin receptor knockout (DIRKO), to determine the consequences of a lifelong, complete lack of incretin hormone action on beta cell function, in vivo, in intact animals. We found that DIRKO mice displayed impaired glucose tolerance and insulin secretion in response to both oral glucose and mixed meal tolerance tests compared to wild-type mice. Assessment of beta cell function using the hyperglycemic clamp technique revealed an 80% decrease in first phase insulin response in DIRKO mice, but a normal second phase insulin secretion. A similar decline was seen when wild-type mice were given acute intravenous injection of glucose together with the GLP-1 receptor antagonist Ex9-39. Ex vivo assessments of the pancreas revealed significantly fewer islets in the pancreata of DIRKO mice despite no differences in total pancreatic mass. Insulin secretion from isolated islets of DIRKO mice was impaired to a similar extent to that seen during the hyperglycemic clamp. Insulin secretion in wild-type islets was impaired by acute treatment with Ex9-39 to a similar extent as the in vivo intravenous glucose tolerance tests. In conclusion, a loss of the action of both incretin hormones results in direct impairment of beta cell function both in vivo and in vitro in a process that appears to be independent of the intestinally secreted incretin hormones. We therefore conclude that the incretin hormones together significantly impact both beta-cell function and beta-cell development.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号