首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 443 毫秒
1.
Hepatic encephalopathy (HE) has been related to gut bacteria and inflammation in the setting of intestinal barrier dysfunction. We aimed to link the gut microbiome with cognition and inflammation in HE using a systems biology approach. Multitag pyrosequencing (MTPS) was performed on stool of cirrhotics and age-matched controls. Cirrhotics with/without HE underwent cognitive testing, inflammatory cytokines, and endotoxin analysis. Patients with HE were compared with those without HE using a correlation-network analysis. A select group of patients with HE (n = 7) on lactulose underwent stool MTPS before and after lactulose withdrawal over 14 days. Twenty-five patients [17 HE (all on lactulose, 6 also on rifaximin) and 8 without HE, age 56 ± 6 yr, model for end-stage liver disease score 16 ± 6] and ten controls were included. Fecal microbiota in cirrhotics were significantly different (higher Enterobacteriaceae, Alcaligeneceae, and Fusobacteriaceae and lower Ruminococcaceae and Lachnospiraceae) compared with controls. We found altered flora (higher Veillonellaceae), poor cognition, endotoxemia, and inflammation (IL-6, TNF-α, IL-2, and IL-13) in HE compared with cirrhotics without HE. In the cirrhosis group, Alcaligeneceae and Porphyromonadaceae were positively correlated with cognitive impairment. Fusobacteriaceae, Veillonellaceae, and Enterobacteriaceae were positively and Ruminococcaceae negatively related to inflammation. Network-analysis comparison showed robust correlations (all P < 1E-5) only in the HE group between the microbiome, cognition, and IL-23, IL-2, and IL-13. Lactulose withdrawal did not change the microbiome significantly beyond Fecalibacterium reduction. We concluded that cirrhosis, especially when complicated with HE, is associated with significant alterations in the stool microbiome compared with healthy individuals. Specific bacterial families (Alcaligeneceae, Porphyromonadaceae, Enterobacteriaceae) are strongly associated with cognition and inflammation in HE.  相似文献   

2.
The involvement of the gut microbiota in metabolic disorders, and the ability of whole grains to affect both host metabolism and gut microbial ecology, suggest that some benefits of whole grains are mediated through their effects on the gut microbiome. Nutritional studies that assess the effect of whole grains on both the gut microbiome and human physiology are needed. We conducted a randomized cross-over trial with four-week treatments in which 28 healthy humans consumed a daily dose of 60 g of whole-grain barley (WGB), brown rice (BR), or an equal mixture of the two (BR+WGB), and characterized their impact on fecal microbial ecology and blood markers of inflammation, glucose and lipid metabolism. All treatments increased microbial diversity, the Firmicutes/Bacteroidetes ratio, and the abundance of the genus Blautia in fecal samples. The inclusion of WGB enriched the genera Roseburia, Bifidobacterium and Dialister, and the species Eubacterium rectale, Roseburia faecis and Roseburia intestinalis. Whole grains, and especially the BR+WGB treatment, reduced plasma interleukin-6 (IL-6) and peak postprandial glucose. Shifts in the abundance of Eubacterium rectale were associated with changes in the glucose and insulin postprandial response. Interestingly, subjects with greater improvements in IL-6 levels harbored significantly higher proportions of Dialister and lower abundance of Coriobacteriaceae. In conclusion, this study revealed that a short-term intake of whole grains induced compositional alterations of the gut microbiota that coincided with improvements in host physiological measures related to metabolic dysfunctions in humans.  相似文献   

3.
Recently several human health-related microbiota studies have had partly contradictory results. As some differences may be explained by methodologies applied, we evaluated how different storage conditions and commonly used DNA-extraction kits affect bacterial composition, diversity, and numbers of human fecal microbiota. According to our results, the DNA-extraction did not affect the diversity, composition, or quantity of Bacteroides spp., whereas after a week's storage at -20?°C, the numbers of Bacteroides spp. were 1.6-2.5 log units lower (P?相似文献   

4.
Polyunsaturated fatty acids (PUFAs) may affect colon microbiome homeostasis by exerting (specific) antimicrobial effects and/or interfering with mucosal biofilm formation at the gut mucosal interface. We used standardized batch incubations and the Mucosal‐Simulator of the Human Microbial Intestinal Ecosystem (M‐SHIME) to show the in vitro luminal and mucosal effects of the main PUFA in the Western diet, linoleic acid (LA). High concentrations of LA were found to decrease butyrate production and Faecalibacterium prausnitzii numbers dependent on LA biohydrogenation to vaccenic acid (VA) and stearic acid (SA). In faecal batch incubations, LA biohydrogenation and butyrate production were positively correlated and SA did not inhibit butyrate production. In the M‐SHIME, addition of a mucosal environment stimulated biohydrogenation to SA and protected F. prausnitzii from inhibition by LA. This was probably due to the preference of two biohydrogenating genera Roseburia and Pseudobutyrivibrio for the mucosal niche. Co‐culture batch incubations using Roseburia hominis and F. prausnitzii validated these observations. Correlations networks further uncovered the central role of Roseburia and Pseudobutyrivibrio in protecting luminal and mucosal SHIME microbiota from LA‐induced stress. Our results confirm how cross‐shielding interactions provide resilience to the microbiome and demonstrate the importance of biohydrogenating, mucosal bacteria for recovery from LA stress.  相似文献   

5.
The microbiome plays an important role in maintaining human health. Despite multiple factors being attributed to the shaping of the human microbiome, extrinsic factors such diet and use of medications including antibiotics appear to dominate. Mucosal surfaces, particularly in the gut, are highly adapted to be able to tolerate a large population of microorganisms whilst still being able to produce a rapid and effective immune response against infection. The intestinal microbiome is not functionally independent from the host mucosa and can, through presentation of microbe-associated molecular patterns (MAMPs) and generation of microbe-derived metabolites, fundamentally influence mucosal barrier integrity and modulate host immunity. In a healthy gut there is an abundance of beneficial bacteria that help to preserve intestinal homoeostasis, promote protective immune responses, and limit excessive inflammation. The importance of the microbiome is further highlighted during dysbiosis where a loss of this finely balanced microbial population can lead to mucosal barrier dysfunction, aberrant immune responses, and chronic inflammation that increases the risk of disease development. Improvements in our understanding of the microbiome are providing opportunities to harness members of a healthy microbiota to help reverse dysbiosis, reduce inflammation, and ultimately prevent disease progression.  相似文献   

6.
Acquired immune deficiency syndrome (AIDS), caused by infection with human immunodeficiency virus (HIV), is associated with gastrointestinal disease, systemic immune activation and changes in the gut microbiota. Here, we aim to investigate the gut microbiota patterns of HIV‐infected individuals and HIV‐uninfected individuals in populations from South China. We enrolled 33 patients with HIV (14 participants treated with highly active antiretroviral therapy [HAART] for more than 3 months; the remaining 19 individuals had not received treatment) and 35 healthy controls (HC) for a cross‐sectional comparison of gut microbiota using stool samples. Gut microbial communities were profiled by sequencing the bacterial 16S rRNA genes. Dysbiosis was more common among patients with AIDS compared with healthy individuals. Dysbiosis was characterized by decreased α‐diversity, low mean counts of Bacteroidetes, Faecalibacterium, Prevotella, Bacteroides vulgatus, Dialister and Roseburia inulnivorans, and high mean counts of Proteobacteria, Enterococcus, Streptococcus, Lactobacillus, Lachnociostridium, Ruminococcus gnavus and Streptococcus vestibularis. Increased abundance of Bacilli was observed in homosexual patients. Proteobacteria were higher among heterosexual patients with HIV infections. Tenericutes were higher among patients with history of intravenous drug abuse. Restoration of gut microbiota diversity and a significant increase in abundance of Faecalibacterium, Blautia and Bacteroides were found in patients receiving HAART compared to those who did not receive. HIV infection‐associated dysbiosis is characterized by decreased levels of α‐diversity and Bacteroidetes, increased levels of Proteobacteria and the alterations of gut microbiota correlate with the route of HIV transmission. The imbalanced faecal microbiota of HIV infection is partially restored after therapy.  相似文献   

7.
Several studies indicate the importance of colonic microbiota in metabolic and inflammatory disorders and importance of diet on microbiota composition. The effects of alcohol, one of the prominent components of diet, on colonic bacterial composition is largely unknown. Mounting evidence suggests that gut-derived bacterial endotoxins are cofactors for alcohol-induced tissue injury and organ failure like alcoholic liver disease (ALD) that only occur in a subset of alcoholics. We hypothesized that chronic alcohol consumption results in alterations of the gut microbiome in a subgroup of alcoholics, and this may be responsible for the observed inflammatory state and endotoxemia in alcoholics. Thus we interrogated the mucosa-associated colonic microbiome in 48 alcoholics with and without ALD as well as 18 healthy subjects. Colonic biopsy samples from subjects were analyzed for microbiota composition using length heterogeneity PCR fingerprinting and multitag pyrosequencing. A subgroup of alcoholics have an altered colonic microbiome (dysbiosis). The alcoholics with dysbiosis had lower median abundances of Bacteroidetes and higher ones of Proteobacteria. The observed alterations appear to correlate with high levels of serum endotoxin in a subset of the samples. Network topology analysis indicated that alcohol use is correlated with decreased connectivity of the microbial network, and this alteration is seen even after an extended period of sobriety. We show that the colonic mucosa-associated bacterial microbiome is altered in a subset of alcoholics. The altered microbiota composition is persistent and correlates with endotoxemia in a subgroup of alcoholics.  相似文献   

8.
A growing number of studies implicate the microbiome in the pathogenesis of intestinal inflammation. Previous work has shown that adults with esophagitis related to gastroesophageal reflux disease have altered esophageal microbiota compared to those who do not have esophagitis. In these studies, sampling of the esophageal microbiome was accomplished by isolating DNA from esophageal biopsies obtained at the time of upper endoscopy. The aim of the current study was to identify the esophageal microbiome in pediatric individuals with normal esophageal mucosa using a minimally invasive, capsule-based string technology, the Enterotest?. We used the proximal segment of the Enterotest string to sample the esophagus, and term this the "Esophageal String Test" (EST). We hypothesized that the less invasive EST would capture mucosal adherent bacteria present in the esophagus in a similar fashion as mucosal biopsy. EST samples and mucosal biopsies were collected from children with no esophageal inflammation (n?=?15) and their microbiome composition determined by 16S rRNA gene sequencing. Microbiota from esophageal biopsies and ESTs produced nearly identical profiles of bacterial genera and were different from the bacterial contents of samples collected from the nasal and oral cavity. We conclude that the minimally invasive EST can serve as a useful device for study of the esophageal microbiome.  相似文献   

9.
Heat acclimation (HA) is the best strategy to improve heat stress tolerance by inducing positive physiological adaptations. Evidence indicates that the gut microbiome plays a fundamental role in the development of HA, and modulation of gut microbiota can improve tolerance to heat exposure and decrease the risks of heat illness. In this study, for the first time, we applied 16S rRNA gene sequencing and untargeted liquid chromatography–mass spectrometry (LC-MS) metabolomics to explore variations in the gut microbiome and faecal metabolic profiles in rats after HA. The gut microbiota of HA subjects exhibited higher diversity and richer microbes. HA altered the gut microbiota composition with significant increases in the genera Lactobacillus (a major probiotic) and Oscillospira alongside significant decreases in the genera Blautia and Allobaculum. The faecal metabolome was also significantly changed after HA, and among the 13 perturbed metabolites, (S)-AL 8810 and celastrol were increased. Moreover, the two increased genera were positively correlated with the two upregulated metabolites and negatively correlated with the other 11 downregulated metabolites, while the correlations between the two decreased genera and the upregulated/downregulated metabolites were completely contrary. In summary, both the structure of the gut microbiome community and the faecal metabolome were improved after 28 days of HA. These findings provide novel insights regarding the improvement of the gut microbiome and its functions as a potential mechanism by which HA confers protection against heat stress.  相似文献   

10.
Gut microbiota is regarded as a crucial regulator of the immune system. Healthy gut microbiota plays a specialized role in host xenobiotics, nutrition, drug metabolism, regulation of the structural integrity of the gut mucosal barrier, defense against infections, and immunomodulation. It is now understood that any imbalance in gut microbiota composition from that present in a healthy state is linked to genetic susceptibility to a number of metabolic disorders, including diabetes, autoimmunity, and cancer. Recent research has suggested that immunotherapy can treat many different cancer types with fewer side effects and better ability to eradicate tumors than conventional chemotherapy or radiotherapy. However, a significant number of patients eventually develop immunotherapy resistance. A strong correlation was observed between the composition of the gut microbiome and the effectiveness of treatment by examining the variations between populations that responded to immunotherapy and those that did not. Therefore, we suggest that modulating the microbiome could be a potential adjuvant therapy for cancer immunotherapy and that the architecture of the gut microbiota may be helpful in explaining the variation in treatment response. Herein, we focus on recent research on the interactions among the gut microbiome, host immunity, and cancer immunotherapy. In addition, we highlighted the clinical manifestations, future opportunities, and limitations of microbiome manipulation in cancer immunotherapy.  相似文献   

11.
How long-term dietary intake shapes microbiota composition and stability in young children is poorly understood. Herein, the temporal variability in stool microbiota composition in relation to habitual dietary patterns of 4- to 8-year-old children (n=22) was investigated. Fecal samples were collected at baseline, 6 weeks and 6 months. Bacterial composition and volatile fatty acids were assessed by 16S rRNA sequencing and gas-chromatography, respectively. Nutrient intake was assessed using 3-day food diaries and dietary patterns were empirically derived from a food frequency questionnaire. Using a factor loading of >0.45 for a food group to be a major contributor to the overall dietary pattern, two dietary patterns were found to be associated with distinct microbiome composition. Dietary Pattern 1 (DP1), characterized by intake of fish, protein foods, refined carbohydrates, vegetables, fruit, juice and sweetened beverages, kid’s meals and snacks and sweets, was associated with higher relative abundance of Bacteroidetes, Bacteroides and Ruminococcus and lower abundance of Bifidobacterium, Prevotella, Blautia and Roseburia. Dietary Pattern 2 (DP2), characterized by intake of grains, dairy and legumes, nuts and seeds, was associated with higher relative abundance of Cyanobacteria and Phascolarctobacterium and lower abundance of Dorea and Eubacterium. Fruit and starchy foods were present in both patterns, but were more associated with DP1 and DP2, respectively. Temporal stability of microbiota over a 6-month period was associated with baseline dietary patterns. Understanding how dietary intake contributes to microbiota composition and stability in early life in important for dietary recommendations and designing clinical interventions for microbiota-associated diseases.  相似文献   

12.
Accumulating evidence supports that the intestinal microbiome is involved in Type 1 diabetes (T1D) pathogenesis through the gut-pancreas nexus. Our aim was to determine whether the intestinal microbiota in the non-obese diabetic (NOD) mouse model played a role in T1D through the gut. To examine the effect of the intestinal microbiota on T1D onset, we manipulated gut microbes by: (1) the fecal transplantation between non-obese diabetic (NOD) and resistant (NOR) mice and (2) the oral antibiotic and probiotic treatment of NOD mice. We monitored diabetes onset, quantified CD4+T cells in the Peyer''s patches, profiled the microbiome and measured fecal short-chain fatty acids (SCFA). The gut microbiota from NOD mice harbored more pathobionts and fewer beneficial microbes in comparison with NOR mice. Fecal transplantation of NOD microbes induced insulitis in NOR hosts suggesting that the NOD microbiome is diabetogenic. Moreover, antibiotic exposure accelerated diabetes onset in NOD mice accompanied by increased T-helper type 1 (Th1) and reduced Th17 cells in the intestinal lymphoid tissues. The diabetogenic microbiome was characterized by a metagenome altered in several metabolic gene clusters. Furthermore, diabetes susceptibility correlated with reduced fecal SCFAs. In an attempt to correct the diabetogenic microbiome, we administered VLS#3 probiotics to NOD mice but found that VSL#3 colonized the intestine poorly and did not delay diabetes. We conclude that NOD mice harbor gut microbes that induce diabetes and that their diabetogenic microbiome can be amplified early in life through antibiotic exposure. Protective microbes like VSL#3 are insufficient to overcome the effects of a diabetogenic microbiome.  相似文献   

13.
The aim of this study was to compare the structure of gut microbiota in Parkinson's disease(PD) patients and healthy controls;and to explore correlations between gut microbiota and PD clinical features. We analyzed fecal bacterial composition of 24 PD patients and 14 healthy volunteers by using 16 S rRNA sequencing. There were significant differences between PD and healthy controls, as well as among different PD stages. The putative cellulose degrading bacteria from the genera Blautia(P=0.018),Faecalibacterium(P=0.048) and Ruminococcus(P=0.019) were significantly decreased in PD compared to healthy controls.The putative pathobionts from the genera Escherichia-Shigella(P=0.038), Streptococcus(P=0.01), Proteus(P=0.022), and Enterococcus(P=0.006) were significantly increased in PD subjects. Correlation analysis indicated that disease severity and PD duration negatively correlated with the putative cellulose degraders, and positively correlated with the putative pathobionts. The results suggest that structural changes of gut microbiota in PD are characterized by the decreases of putative cellulose degraders and the increases of putative pathobionts, which may potentially reduce the production of short chain fatty acids, and produce more endotoxins and neurotoxins; and these changes is potentially associated with the development of PD pathology.  相似文献   

14.
The mucosal immune system – consisting of adaptive and innate immune cells as well as the epithelium – is profoundly influenced by its microbial environment. There is now growing evidence that the converse is also true, that the immune system shapes the composition of the intestinal microbiome. During conditions of health, this bidirectional interaction achieves a homeostasis in which inappropriate immune responses to non-pathogenic microbes are averted and immune activity suppresses blooms of potentially pathogenic microbes (pathobionts). Genetic alteration in immune/epithelial function can affect host gardening of the intestinal microbiome, contributing to the diversity of intestinal microbiota within a population and in some cases allowing for unfavorable microbial ecologies (dysbiosis) that confer disease susceptibility.  相似文献   

15.

The study of the human gut microbiome is essential in microbiology and infectious diseases as specific alterations in the gut microbiome might be associated with various pathologies, such as chronic inflammatory disease, intestinal infection and colorectal cancer. To identify such dysregulations, several strategies are being used to create a repertoire of the microorganisms composing the human gut microbiome. In this study, we used the “microscomics” approach, which consists of creating an ultrastructural repertoire of all the cell-like objects composing stool samples from healthy donors using transmission electron microscopy (TEM). We used TEM to screen ultrathin sections of 8 resin-embedded stool samples. After exploring hundreds of micrographs, we managed to elaborate ultrastructural categories based on morphological criteria or features. This approach explained many inconsistencies observed with other techniques, such as metagenomics and culturomics. We highlighted the value of our culture-independent approach by comparing our microscopic images to those of cultured bacteria and those reported in the literature. This study helped to detect “minimicrobes” Candidate Phyla Radiation (CPR) for the first time in human stool samples. This “microscomics” approach is non-exhaustive but complements already existing approaches and adds important data to the puzzle of the microbiota.

  相似文献   

16.
Fucosyltransferase 2 (FUT2) is an enzyme that is responsible for the synthesis of the H antigen in body fluids and on the intestinal mucosa. The H antigen is an oligosaccharide moiety that acts as both an attachment site and carbon source for intestinal bacteria. Non-secretors, who are homozygous for the loss-of-function alleles of FUT2 gene (sese), have increased susceptibility to Crohn''s disease (CD). To characterize the effect of FUT2 polymorphism on the mucosal ecosystem, we profiled the microbiome, meta-proteome and meta-metabolome of 75 endoscopic lavage samples from the cecum and sigmoid of 39 healthy subjects (12 SeSe, 18 Sese and 9 sese). Imputed metagenomic analysis revealed perturbations of energy metabolism in the microbiome of non-secretor and heterozygote individuals, notably the enrichment of carbohydrate and lipid metabolism, cofactor and vitamin metabolism and glycan biosynthesis and metabolism-related pathways, and the depletion of amino-acid biosynthesis and metabolism. Similar changes were observed in mice bearing the FUT2−/− genotype. Metabolomic analysis of human specimens revealed concordant as well as novel changes in the levels of several metabolites. Human metaproteomic analysis indicated that these functional changes were accompanied by sub-clinical levels of inflammation in the local intestinal mucosa. Therefore, the colonic microbiota of non-secretors is altered at both the compositional and functional levels, affecting the host mucosal state and potentially explaining the association of FUT2 genotype and CD susceptibility.  相似文献   

17.
Bacterial colonisation of the gut plays a major role in postnatal development and maturation of key systems that have the capacity to influence central nervous system (CNS) programming and signaling, including the immune and endocrine systems. Individually, these systems have been implicated in the neuropathology of many CNS disorders and collectively they form an important bidirectional pathway of communication between the microbiota and the brain in health and disease. Regulation of the microbiome–brain–gut axis is essential for maintaining homeostasis, including that of the CNS. Moreover, there is now expanding evidence for the view that commensal organisms within the gut play a role in early programming and later responsivity of the stress system. Research has focused on how the microbiota communicates with the CNS and thereby influences brain function. The routes of this communication are not fully elucidated but include neural, humoral, immune and metabolic pathways. This view is underpinned by studies in germ-free animals and in animals exposed to pathogenic bacterial infections, probiotic agents or antibiotics which indicate a role for the gut microbiota in the regulation of mood, cognition, pain and obesity. Thus, the concept of a microbiome–brain–gut axis is emerging which suggests that modulation of the gut microflora may be a tractable strategy for developing novel therapeutics for complex stress-related CNS disorders where there is a huge unmet medical need.  相似文献   

18.

Background

The inflammatory bowel diseases (IBD) Crohn's disease and ulcerative colitis result from alterations in intestinal microbes and the immune system. However, the precise dysfunctions of microbial metabolism in the gastrointestinal microbiome during IBD remain unclear. We analyzed the microbiota of intestinal biopsies and stool samples from 231 IBD and healthy subjects by 16S gene pyrosequencing and followed up a subset using shotgun metagenomics. Gene and pathway composition were assessed, based on 16S data from phylogenetically-related reference genomes, and associated using sparse multivariate linear modeling with medications, environmental factors, and IBD status.

Results

Firmicutes and Enterobacteriaceae abundances were associated with disease status as expected, but also with treatment and subject characteristics. Microbial function, though, was more consistently perturbed than composition, with 12% of analyzed pathways changed compared with 2% of genera. We identified major shifts in oxidative stress pathways, as well as decreased carbohydrate metabolism and amino acid biosynthesis in favor of nutrient transport and uptake. The microbiome of ileal Crohn's disease was notable for increases in virulence and secretion pathways.

Conclusions

This inferred functional metagenomic information provides the first insights into community-wide microbial processes and pathways that underpin IBD pathogenesis.  相似文献   

19.
Liu J  Wu D  Ahmed A  Li X  Ma Y  Tang L  Mo D  Ma Y  Xin Y 《Current microbiology》2012,65(1):7-13
Human liver was closely associated with gut through various biological mechanisms, such as bacterium-gut interactions. Alterations of gut microbiota seemed to play an important role in induction and promotion of liver damage progression. The aim of this study was to characterize the gut microbiota in liver cirrhosis patients and assess whether there are alterations in the diversity and similarity of intestinal flora in cirrhotic patients when compared with healthy individuals. PCR-denaturing gradient gel electrophoresis (DGGE) with universal primers targeting V3 region of the 16S rRNA gene was employed to characterize the overall intestinal microbiota composition, and some excised gel bands were cloned for sequencing. Real-time PCR was further utilized to quantitatively analyze the subpopulation of microbiota using group-specific primers targeting the Enterobacteriaceae, Enterococcus and Bifidobacterium genus. The DGGE profiles of two groups demonstrated significant differences between cirrhotic and healthy groups (P?相似文献   

20.

Background

To understand the relationship between our bacterial microbiome and health, it is essential to define the microbiome in the absence of disease. The digestive tract includes diverse habitats and hosts the human body's greatest bacterial density. We describe the bacterial community composition of ten digestive tract sites from more than 200 normal adults enrolled in the Human Microbiome Project, and metagenomically determined metabolic potentials of four representative sites.

Results

The microbiota of these diverse habitats formed four groups based on similar community compositions: buccal mucosa, keratinized gingiva, hard palate; saliva, tongue, tonsils, throat; sub- and supra-gingival plaques; and stool. Phyla initially identified from environmental samples were detected throughout this population, primarily TM7, SR1, and Synergistetes. Genera with pathogenic members were well-represented among this disease-free cohort. Tooth-associated communities were distinct, but not entirely dissimilar, from other oral surfaces. The Porphyromonadaceae, Veillonellaceae and Lachnospiraceae families were common to all sites, but the distributions of their genera varied significantly. Most metabolic processes were distributed widely throughout the digestive tract microbiota, with variations in metagenomic abundance between body habitats. These included shifts in sugar transporter types between the supragingival plaque, other oral surfaces, and stool; hydrogen and hydrogen sulfide production were also differentially distributed.

Conclusions

The microbiomes of ten digestive tract sites separated into four types based on composition. A core set of metabolic pathways was present across these diverse digestive tract habitats. These data provide a critical baseline for future studies investigating local and systemic diseases affecting human health.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号