首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
Cholesterol has been shown to modulate the activity of multiple G Protein-coupled receptors (GPCRs), yet whether cholesterol acts through specific interactions, indirectly via modifications to the membrane, or via both mechanisms is not well understood. High-resolution crystal structures of GPCRs have identified bound cholesterols; based on a β2-adrenergic receptor (β2AR) structure bound to cholesterol and the presence of conserved amino acids in class A receptors, the cholesterol consensus motif (CCM) was identified. Here in mammalian cells expressing the adenosine A2A receptor (A2AR), ligand dependent production of cAMP is reduced following membrane cholesterol depletion with methyl-beta-cyclodextrin (MβCD), indicating that A2AR signaling is dependent on cholesterol. In contrast, ligand binding is not dependent on cholesterol depletion. All-atom molecular simulations suggest that cholesterol interacts specifically with the CCM when the receptor is in an active state, but not when in an inactive state. Taken together, the data support a model of receptor state-dependent binding between cholesterol and the CCM, which could facilitate both G-protein coupling and downstream signaling of A2AR.  相似文献   

2.
There is increasing evidence that functional crosstalk between GPCRs and EGFR contributes to the progression of colon, lung, breast, ovarian, prostate and head and neck tumors. In this study, we performed multiple analyses of GPCR expression in a gefitinib-resistant non-small cell lung cancer (NSCLC) cell line, H1975, which harbors an L858R/T790M mutation. To determine the expression profile of mRNAs encoding 384 GPCRs in normal human lung fibroblast (NHLF) and H1975 cells, a GPCR-specific microarray analysis was performed. A heat-map of the microarray revealed considerable differences in the expression of GPCRs between NHLF and H1975 cells. From the GPCR expression list, we selected some GPCR agonists/antagonist to investigate whether the respective ligands could affect the growth of H1975 cells. Among them, treatment with either a selective antagonist of adenosine A2a receptors, which were highly expressed in H1975 cell and another gefitinib-resistant NSCLC cells, HCC827GR cells or “small interfering RNA” (siRNA) targeting adenosine A2a receptors produced a significant decrease in cell viability of both H1975 and HCC827GR cells. Among up-regulated GPCRs in H1975 cells, Gs-, Gi- and Gq-coupled GPCRs were expressed almost equally. Among down-regulated GPCRs, Gi-coupled GPCRs were dominantly expressed in H1975 cells. The present results suggest that multilayered crosstalk between GPCRs and EGFR may play an important role in orchestrating downstream signaling molecules that are implicated in the development of gefitinib-resistant NSCLC.  相似文献   

3.
A growing body of evidence indicates that G protein-coupled receptors (GPCRs) are involved in breast tumor progression and that targeting GPCRs may be a novel adjuvant strategy in cancer treatment. However, due to the redundant role of multiple GPCRs in tumor development, it may be necessary to target a common signaling component downstream of these receptors to achieve maximum efficacy. GPCRs transmit signals through heterotrimeric G proteins composed of Gα and Gβγ subunits. Here we evaluated the role of Gβγ in breast tumor growth and metastasis both in vitro and in vivo. Our data show that blocking Gβγ signaling with Gα(t) or small molecule inhibitors blocked serum-induced breast tumor cell proliferation as well as tumor cell migration induced by various GPCRs in vitro. Moreover, induced expression of Gα(t) in MDA-MB-231 cells inhibited primary tumor formation and retarded growth of existing breast tumors in nude mice. Blocking Gβγ signaling also dramatically reduced the incidence of spontaneous lung metastasis from primary tumors and decreased tumor formation in the experimental lung metastasis model. Additional studies indicate that Gβγ signaling may also play a role in the generation of a tumor microenvironment permissive for tumor progression, because the inhibition of Gβγ signaling attenuated leukocyte infiltration and angiogenesis in primary breast tumors. Taken together, our data demonstrate a critical role of Gβγ signaling in promoting breast tumor growth and metastasis and suggest that targeting Gβγ may represent a novel therapeutic approach for breast cancer.  相似文献   

4.
G‐protein coupled receptors (GPCRs), a major gatekeeper of extracellular signals on plasma membrane, are unarguably one of the most important therapeutic targets. Given the recent discoveries of allosteric modulations, an allosteric wiring diagram of intramolecular signal transductions would be of great use to glean the mechanism of receptor regulation. Here, by evaluating betweenness centrality (CB) of each residue, we calculate maps of information flow in GPCRs and identify key residues for signal transductions and their pathways. Compared with preexisting approaches, the allosteric hotspots that our CB‐based analysis detects for A2A adenosine receptor (A2AAR) and bovine rhodopsin are better correlated with biochemical data. In particular, our analysis outperforms other methods in locating the rotameric microswitches, which are generally deemed critical for mediating orthosteric signaling in class A GPCRs. For A2AAR, the inter‐residue cross‐correlation map, calculated using equilibrium structural ensemble from molecular dynamics simulations, reveals that strong signals of long‐range transmembrane communications exist only in the agonist‐bound state. A seemingly subtle variation in structure, found in different GPCR subtypes or imparted by agonist bindings or a point mutation at an allosteric site, can lead to a drastic difference in the map of signaling pathways and protein activity. The signaling map of GPCRs provides valuable insights into allosteric modulations as well as reliable identifications of orthosteric signaling pathways. Proteins 2014; 82:727–743. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
G‐protein‐coupled receptors (GPCRs) are the largest family of integral membrane receptors with key roles in regulating signaling pathways targeted by therapeutics, but are difficult to study using existing proteomics technologies due to their complex biochemical features. To obtain a global view of GPCR‐mediated signaling and to identify novel components of their pathways, we used a modified membrane yeast two‐hybrid (MYTH) approach and identified interacting partners for 48 selected full‐length human ligand‐unoccupied GPCRs in their native membrane environment. The resulting GPCR interactome connects 686 proteins by 987 unique interactions, including 299 membrane proteins involved in a diverse range of cellular functions. To demonstrate the biological relevance of the GPCR interactome, we validated novel interactions of the GPR37, serotonin 5‐HT4d, and adenosine ADORA2A receptors. Our data represent the first large‐scale interactome mapping for human GPCRs and provide a valuable resource for the analysis of signaling pathways involving this druggable family of integral membrane proteins.  相似文献   

6.
The actin cytoskeleton is involved in a multitude of cellular responses besides providing structural support. While the role of the actin cytoskeleton in cellular processes such as trafficking and motility has been extensively studied, reorganization of the actin cytoskeleton upon signaling by G-protein coupled receptors (GPCRs) represents a relatively unexplored area. The G-protein coupled receptor superfamily is an important protein family in mammals, involved in signal transduction across membranes. G-protein coupled receptors act as major signaling hubs and drug targets. The serotonin(1A) receptor is a representative member of the G-protein coupled receptor superfamily and plays a crucial role in the generation and modulation of various cognitive, developmental and behavioral functions. In order to monitor the changes in the actin cytoskeleton upon serotonin(1A) receptor signaling in a quantitative manner, we developed an approach based on high magnification imaging of F-actin in cells, followed by image reconstruction. Our results suggest that the actin cytoskeleton is reorganized in response to serotonin(1A) receptor signaling. In addition, we show that reorganization of the actin cytoskeleton is strongly dependent on adenosine 3',5'-cyclic monophosphate level, and is mediated by the activation of protein kinase A. Our results are consistent with the possibility of a feedback mechanism involving the actin cytoskeleton, adenosine 3',5'-cyclic monophosphate level and the serotonin(1A) receptor.  相似文献   

7.
In airway epithelial cells, apical adenosine regulates transepithelial anion secretion by activation of apical cystic fibrosis transmembrane conductance regulator (CFTR) via adenosine receptors and cAMP/PKA signaling. However, the potent stimulation of anion secretion by adenosine is not correlated with its modest intracellular cAMP elevation, and these uncorrelated efficacies have led to the speculation that additional signaling pathways may be involved. Here, we showed that mucosal adenosine-induced anion secretion, measured by short-circuit current (Isc), was inhibited by the PLC-specific inhibitor U-73122 in the human airway submucosal cell line Calu-3. In addition, the Isc was suppressed by BAPTA-AM (a Ca2+ chelator) and 2-aminoethoxydiphenyl borate (2-APB; an inositol 1,4,5-trisphosphate receptor blocker), but not by PKC inhibitors, suggesting the involvement of PKC-independent PLC/Ca2+ signaling. Ussing chamber and patch-clamp studies indicated that the adenosine-induced PLC/Ca2+ signaling stimulated basolateral Ca2+-activated potassium (KCa) channels predominantly via A2B adenosine receptors and contributed substantially to the anion secretion. Thus, our data suggest that apical adenosine activates contralateral K+ channels via PLC/Ca2+ and thereby increases the driving force for transepithelial anion secretion, synergizing with its modulation of ipsilateral CFTR via cAMP/PKA. Furthermore, the dual activation of CFTR and KCa channels by apical adenosine resulted in a mixed secretion of chloride and bicarbonate, which may alter the anion composition in the secretion induced by secretagogues that elicit extracellular ATP/adenosine release. Our findings provide novel mechanistic insights into the regulation of anion section by adenosine, a key player in the airway surface liquid homeostasis and mucociliary clearance.  相似文献   

8.
Pharmacological studies suggest that A(2B) adenosine receptors mediate proinflammatory effects of adenosine in human mast cells in part by up-regulating production of Th2 cytokines and angiogenic factors. This concept has been recently challenged by the finding that mast cells cultured from bone marrow-derived mast cells (BMMCs) of A(2B) knockout mice display an enhanced degranulation in response to FcepsilonRI stimulation. This finding was interpreted as evidence of anti-inflammatory functions of A(2B) receptors and it was suggested that antagonists with inverse agonist activity could promote activation of mast cells. In this report, we demonstrate that genetic ablation of the A(2B) receptor protein has two distinct effects on BMMCs, one is the previously reported enhancement of Ag-induced degranulation, which is unrelated to adenosine signaling; the other is the loss of adenosine signaling via this receptor subtype that up-regulates IL-13 and vascular endothelial growth factor secretion. Genetic ablation of A(2B) receptors had no effect on A(3) adenosine receptor-dependent potentiation of Ag-induced degranulation in mouse BMMCs, but abrogated A(2B) adenosine receptor-dependent stimulation of IL-13 and vascular endothelial growth factor secretion. Adenosine receptor antagonists MRS1706 and DPCPX with known inverse agonist activity at the A(2B) subtype inhibited IL-13 secretion induced by the adenosine analog NECA, but did not mimic the enhanced Ag-induced degranulation observed in A(2B) knockout BMMCs. Thus, our study confirmed the proinflammatory role of adenosine signaling via A(2B) receptors and the anti-inflammatory actions of A(2B) antagonists in mouse BMMCs.  相似文献   

9.
The phosphorylation-dependent binding of arrestins to cytoplasmic domains of G protein-coupled receptors (GPCRs) is thought to be a crucial step in receptor desensitization. In some GPCR systems, arrestins have also been demonstrated to be involved in receptor internalization, resensitization, and the activation of signaling cascades. The objective of the current study was to examine binding interactions of members of the arrestin family with the formyl peptide receptor (FPR), a member of the GPCR family of receptors. Peptides representing the unphosphorylated and phosphorylated carboxyl terminus of the FPR were synthesized and bound to polystyrene beads via a biotin/streptavidin interaction. Using fluorescein-conjugated arrestins, binding interactions between arrestins and the bead-bound FPR carboxyl terminus were analyzed by flow cytometry. Arrestin-2 and arrestin-3 bound to the FPR carboxyl-terminal peptide in a phosphorylation-dependent manner, with K(d) values in the micromolar range. Binding of visual arrestin, which binds rhodopsin with high selectivity, was not observed. Arrestin-2-(1--382) and arrestin-3-(1--393), truncated mutant forms of arrestin that display phosphorylation-independent binding to intact receptors, were also observed to bind the bead-bound FPR terminus in a phosphorylation-dependent manner, but with much greater affinity than the full-length arrestins, yielding K(d) values in the 5--50 nm range. Two additional arrestin mutants, which are full-length but display phosphorylation-independent binding to intact GPCRs, were evaluated for their binding affinity to the FPR carboxyl terminus. Whereas the single point mutant, arrestin-2 R169E, displayed an affinity similar to that of the full-length arrestins, the triple point mutant, arrestin-2 I386A/V387A/F388A, displayed an affinity more similar to that of the truncated forms of arrestin. The results suggest that the carboxyl terminus of arrestin is a critical determinant in regulating the binding affinity of arrestin for the phosphorylated domains of GPCRs.  相似文献   

10.
11.
5'-N-ethylcarboxamideadenosine (NECA) greater than 2-chloroadenosine greater than adenosine greater than (-)-N6-(R-phenyl-isopropyl)-adenosine greater than (+)-N6-(S-phenylisopropyl)-adenosine, in that order of potency, inhibited in vitro antigen-induced histamine release from human basophils in a dose-dependent fashion. Inhibition occurred only during the first stage of antigen-induced histamine release and the nucleosides failed to inhibit the release caused by the Ca2+ ionophore, A23187. 6-nitrobenzylthioinosine and dipyridamole, which inhibit adenosine uptake, and erythro-9-(2-hydroxy-3-nonyl)adenine, which blocks adenosine metabolism, did not impair the inhibition caused by NECA and adenosine. 8-phenyltheophylline and theophylline, two competitive antagonists of adenosine receptors, blocked the inhibition caused by NECA and adenosine. These data suggest that NECA and other adenosine analogs activate a specific cell surface adenosine receptor which possesses properties similar to those of an adenosine A2/Ra receptor.  相似文献   

12.
Adenosine is generated at sites of tissue injury where it serves to regulate inflammation and damage. Adenosine signaling has been implicated in the regulation of pulmonary inflammation and damage in diseases such as asthma and chronic obstructive pulmonary disease; however, the contribution of specific adenosine receptors to key immunoregulatory processes in these diseases is still unclear. Mice deficient in the purine catabolic enzyme adenosine deaminase (ADA) develop pulmonary inflammation and mucous metaplasia in association with adenosine elevations making them a useful model for assessing the contribution of specific adenosine receptors to adenosine-mediated pulmonary disease. Studies suggest that the A(2A) adenosine receptor (A(2A)R) functions to limit inflammation and promote tissue protection; however, the contribution of A(2A)R signaling has not been examined in the ADA-deficient model of adenosine-mediated lung inflammation. The purpose of the current study was to examine the contribution of A(2A)R signaling to the pulmonary phenotype seen in ADA-deficient mice. This was accomplished by generating ADA/A(2A)R double knockout mice. Genetic removal of the A(2A)R from ADA-deficient mice resulted in enhanced inflammation comprised largely of macrophages and neutrophils, mucin production in the bronchial airways, and angiogenesis, relative to that seen in the lungs of ADA-deficient mice with the A(2A)R. In addition, levels of the chemokines monocyte chemoattractant protein-1 and CXCL1 were elevated, whereas levels of cytokines such as TNF-alpha and IL-6 were not. There were no compensatory changes in the other adenosine receptors in the lungs of ADA/A(2A)R double knockout mice. These findings suggest that the A(2A)R plays a protective role in the ADA-deficient model of pulmonary inflammation.  相似文献   

13.
Analysis of published data indicates that the activity of receptors for adenosine, opioids, bradykinin, calcitonin-gene related peptides (CGRP) and epidermal growth factor (EGF) play important role in triggering the cardioprotective effects of ischemic preconditioning. Cannabinoids mimic the infarct-sparing effects of preconditioning. Endogenous adenosine, opioids, bradykinin and CGRP have also been implicated in infarct-reduction with ischemic postconditioning. Again, cannabinoids also mimic the protective effect of postconditioning. Recent works support heterodimerization of G-protein coupled receptors (GPCRs), and GPCR transactivation of EGF receptors. It was found that cross-talk between delta(j)-opioid receptors and adenosine A(1)-receptors is essential to cardiac protection. Furthermore, evidence implicates EGF receptor transactivation in cardioprotective effect of multiple GPCrs including adenosine, acetylcholine, bradykinin, and opioid receptors. Such findings support a convergent pathway in which multiple GPCRs may interact (or function independently) to transactivate EGF receptor-dependent kinase signaling and cytoprotection.  相似文献   

14.
The concept of functional selectivity offers great potential for the development of drugs that selectively activate a specific intracellular signaling pathway. During the last few years, it has become possible to systematically analyse compound libraries on G protein-coupled receptors (GPCRs) for this ‘biased’ form of signaling. We screened over 800 compounds targeting the class of adenosine A1 receptors using a β-arrestin-mediated signaling assay in U2OS cells as a G protein-independent readout for GPCR activation. A selection of compounds was further analysed in a G protein-mediated GTPγS assay. Additionally, receptor affinity of these compounds was determined in a radioligand binding assay with the agonist [3H]CCPA. Of all compounds tested, only LUF5589 9 might be considered as functionally selective for the G protein-dependent pathway, particularly in view of a likely overestimation of β-arrestin signaling in the U2OS cells. Altogether, our study shows that functionally selective ligands for the adenosine A1 receptor are rare, if existing at all. A thorough analysis of biased signaling on other GPCRs also reveals that only very few compounds can be considered functionally selective. This might indicate that the concept of functional selectivity is less common than speculated.  相似文献   

15.
G protein-coupled receptors (GPCRs) regulate diverse physiological processes, and many human diseases are due to defects in GPCR signaling. To identify the dynamic response of a signaling network downstream from a prototypical G(s)-coupled GPCR, the vasopressin V2 receptor, we have carried out multireplicate, quantitative phosphoproteomics with iTRAQ labeling at four time points following vasopressin exposure at a physiological concentration in cells isolated from rat kidney. A total of 12,167 phosphopeptides were identified from 2,783 proteins, with 273 changing significantly in abundance with vasopressin. Two-dimensional clustering of phosphopeptide time courses and Gene Ontology terms revealed that ligand binding to the V2 receptor affects more than simply the canonical cyclic adenosine monophosphate-protein kinase A and arrestin pathways under physiological conditions. The regulated proteins included key components of actin cytoskeleton remodeling, cell-cell adhesion, mitogen-activated protein kinase signaling, Wnt/β-catenin signaling, and apoptosis pathways. These data suggest that vasopressin can regulate an array of cellular functions well beyond its classical role in regulating water and solute transport. These results greatly expand the current view of GPCR signaling in a physiological context and shed new light on potential roles for this signaling network in disorders such as polycystic kidney disease. Finally, we provide an online resource of physiologically regulated phosphorylation sites with dynamic quantitative data (http://helixweb.nih.gov/ESBL/Database/TiPD/index.html).  相似文献   

16.
We previously demonstrated that equilibrative nucleoside transporter 1 was expressed in taste cells, suggesting the existence of an adenosine signaling system, but whether or not the expression of an adenosine receptor occurs in rat taste buds remains unknown. Therefore, we examined the expression profiles of adenosine receptors and evaluated their functionality in rat circumvallate papillae. Among adenosine receptors, the mRNA for an adenosine A2b receptor (A2bR) was expressed by the rat circumvallate papillae, and its expression level was significantly greater in the circumvallate papillae than in the non-taste lingual epithelium. A2bR-immunoreactivity was detected primarily in type II taste cells, and partial, but significant expression was also observed in type III ones, but there was no immunoreactivity in type I ones. The cAMP generation in isolated epithelium containing taste buds treated with 500 μM adenosine or 10 μM BAY60-6583 was significantly increased compared to in the controls. These findings suggest that adenosine plays a role in signaling transmission via A2bR between taste cells in rats.  相似文献   

17.
The zinc finger-containing protein A20 is a negative regulator of TNF-induced JNK (c-Jun-N-terminal kinase) and NFkappaB (nuclear factor kappaB) signaling. A20 is an unusual enzyme that contains both ubiquitinating and deubiquitinating activities. Although A20 is mostly localized in the cytosol, our recent studies reveal that a fraction of A20 can associate with a lysosome-interacting compartment in a manner that requires its carboxy terminal zinc fingers, but independent of its ubiquitin modifying activities. Whether the lysosome-associated A20 has a function in cellular signaling is unclear. Here, we demonstrate that A20 is capable of targeting an associated signaling molecule such as TRAF2 to the lysosomes for degradation. This process is dependent on the membrane tethering zinc finger domains of A20, but does not require A20 ubiquitin modifying activity. Our findings suggest a novel mode of A20 action that involves lysosomal targeting of signal molecules bound to A20.  相似文献   

18.
It is well accepted that G protein-coupled receptors (GPCRs) arrange into dimers or higher-order oligomers that may modify various functions of GPCRs. GPCR-type purinergic receptors (i.e. adenosine and P2Y receptors) tend to form heterodimers with GPCRs not only of the different families but also of the same purinergic receptor families, leading to alterations in functional properties. In the present review, we focus on current knowledge of the formation of heterodimers between metabotropic purinergic receptors that activate novel functions in response to extracellular nucleosides/nucleotides, revealing that the dimerization seems to be employed for ‘fine-tuning’ of purinergic signaling. Thus, the relationship between adenosine and adenosine triphosphate is likely to be more and more intimate than simply being a metabolite of the other.  相似文献   

19.
G-protein coupled receptors (GPCRs) are involved in a variety of disease processes and comprise major drug targets. However, the complexity of integral membrane proteins such as GPCRs makes the identification of their interacting partners and subsequent drug development challenging. A comprehensive understanding of GPCR protein interaction networks is needed to design effective therapeutic strategies to inhibit these drug targets. Here, we developed a novel split-ubiquitin membrane yeast two-hybrid (MYTH) technology called CHIP-MYTH, which allows the unbiased characterization of interaction partners of full-length GPCRs in a drug-dependent manner. This was achieved by coupling DNA microarray technology to the MYTH approach, which allows a quantitative evaluation of interacting partners of a given integral membrane protein in the presence or absence of drug. As a proof of principle, we applied the CHIP-MYTH approach to the human β2-adrenergic receptor (β2AR), a target of interest in the treatment of asthma, chronic obstructive pulmonary disease (COPD), neurological disease, cardiovascular disease, and obesity. A CHIP-MYTH screen was performed in the presence or absence of salmeterol, a long-acting β2AR-agonist. Our results suggest that β2AR activation with salmeterol can induce the dissociation of heterotrimeric G-proteins, Gαβγ, into Gα and Gβγ subunits, which in turn activates downstream signaling cascades. Using CHIP-MYTH, we confirmed previously known and identified novel β2AR interactors involved in GPCR-mediated signaling cascades. Several of these interactions were confirmed in mammalian cells using LUminescence-based Mammalian IntERactome (LUMIER) and co-immunoprecipitation assays. In summary, the CHIP-MYTH approach is ideal for conducting comprehensive protein-protein interactions (PPI) screenings of full-length GPCRs in the presence or absence of drugs, thus providing a valuable tool to further our understanding of GPCR-mediated signaling.  相似文献   

20.
G protein-coupled receptors (GPCRs) are the most common targets of drug action. Allosteric modulators bind to the seven-transmembrane domain of family 3 GPCRs and offer enhanced selectivity over orthosteric ligands that bind to the large extracellular N terminus. We characterize a novel negative allosteric modulator of the human Ca(2+) receptor, Compound 1, that retains activity against the E837A mutant that lacks a response to previously described positive and negative modulators. A related compound, JKJ05, acts as a negative allosteric modulator on the wild type receptor but as a positive modulator on the E837A mutant receptor. This positive modulation critically depends on the primary amine in JKJ05, which appears to interact with acidic residue Glu(767) in our model of the seven-transmembrane domain of the receptor. Our results suggest the need for identification of possible genetic variation in the allosteric site of therapeutically targeted GPCRs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号