首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
J. L. Oud  R. Scholten 《Genetica》1982,58(1):55-63
The staining of male Chinese hamster chromosomes at meiotic prophase with several banding techniques is described. C-banding results only occasionally in well-differentiated pachytene and diakinesis bivalents. Meiotic C-bands are small compared with those in somatic metaphase chromosomes. In mice C-bands mainly consist of highly repetitive satellite DNA, whereas in Chinese hamsters the majority of the DNA in C-bands is not or hardly repetitive. Especially in Chinese hamsters both the degree of chromatin despiralisation and the folding pattern of the chromatin drastically reduce the distinction of C-bands in late meiotic prophasc chromosomes. In contrast to the situation in mice, C-heterochromatin associations are never observed in Chinese hamster spermatocytes. It is assumed that the presence of satellite DNA rather than constitutive heterochromatin is the basis for the associations of the paracentromeric chromosome regions in mice. The location and behaviour of AT- and GC-rich DNA in Chinese hamster primary spermatocytes is studied with base-specific fluorochromes (H 33258 and Chromomycin A3 for AT-and GC-rich DNA respectively), in combination with a pretreatment with base-specific non-fluorescent antibiotics (Actinomycin D and Netropsin for GC-and AT-rich DNA respectively). No indications are found for the clustering of AT-or GC-rich DNA in Chinese hamster pachytene nuclei. A comparison of banding patterns observed in somatic metaphases and in diakinesis gives some information about the partial homology of the X and Y chromosome. The results are conflicting. The short arm of the Y chromosome is homologous with a part of the X chromosome. According to the C-band pattern the long arm of the X chromosome is involved in the pairing with Y, whereas fluorescence banding patterns indicate that it is the short arm of X.  相似文献   

2.
Japanese hop (Humulus japonicus Siebold & Zucc.) was karyotyped by chromosome measurements, fluorescence in situ hybridization with rDNA and telomeric probes, and C-banding/DAPI. The karyotype of this species consists of sex chromosomes (XX in female and XY1Y2 in male plants) and 14 autosomes difficult to distinguish by morphology. The chromosome complement also shows a rather monotonous terminal distribution of telomeric repeats, with the exception of a pair of autosomes possessing an additional cluster of telomeric sequences located within the shorter arm. Using C-banding/DAPI staining and 5S and 45S rDNA probes we constructed a fluorescent karyotype that can be used to distinguish all autosome pairs of this species except for the 2 largest autosome pairs, lacking rDNA signals and having similar size and DAPI-banding patterns. Sex chromosomes of H. japonicus display a unique banding pattern and different DAPI fluorescence intensity. The X chromosome possesses only one brightly stained AT-rich terminal segment, the Y1 has 2 such segments, and the Y2 is completely devoid of DAPI signal. After C-banding/DAPI, both Y chromosomes can be easily distinguished from the rest of the chromosome complement by the increased fluorescence of their arms. We discuss the utility of these methods for studying karyotype and sex chromosome evolution in hops.  相似文献   

3.
Most fish species show little morphological differentiation in the sex chromosomes. We have coupled molecular and cytogenetic analyses to characterize the male-determining region of the rainbow trout (Oncorhynchus mykiss) Y chromosome. Four genetically diverse male clonal lines of this species were used for genetic and physical mapping of regions in the vicinity of the sex locus. Five markers were genetically mapped to the Y chromosome in these male lines, indicating that the sex locus was located on the same linkage group in each of the lines. We also confirmed the presence of a Y chromosome morphological polymorphism among these lines, with the Y chromosomes from two of the lines having the more common heteromorphic Y chromosome and two of the lines having Y chromosomes morphologically similar to the X chromosome. The fluorescence in situ hybridization (FISH) pattern of two probes linked to sex suggested that the sex locus is physically located on the long arm of the Y chromosome. Fishes appear to be an excellent group of organisms for studying sex chromosome evolution and differentiation in vertebrates because they show considerable variability in the mechanisms and (or) patterns involved in sex determination.  相似文献   

4.
Summary XX maleness is the most common condition in which testes develop in the absence of a cytogenetically detectable Y chromosome. Using molecular techniques, it is possible to detect Yp sequences in the majority of XX males. In this study, we could detect Y-specific sequences, including the sex-determining region of the Y chromosome (SRY), using fluorescence in situ hybridization. In 5 out of 6 previously unpublished XX males, SRY was translocated onto the terminal part of an X chromosome. This is the first report in which translocation of an SRY-bearing fragment to an X chromosome in XX males could be directly demonstrated.  相似文献   

5.
W. Schnedl 《Chromosoma》1971,35(2):111-116
A denaturating and renaturating technique, applied to mouse chromosomes, makes visible characteristic banding patterns by which all elements of the karyotype can be individually distinguished. The Y chromosome as a whole appears darkly stained. The X chromosome comprises 6.33% of the homogametic haploid set. The banding pattern of the chromosomes is compared with that obtained by aid of the quinacrine dihydrochloride fluorescence technique. After its use a banding pattern results which is similar to, but less distinct than, that found after the renaturation procedure.  相似文献   

6.
Human chromosome spreads were stained with 3H-quinacrine and their fluorescence observed. The exact location of specific spreads on each slide was noted and photographs taken. Autoradiographs were then prepared so that the quinacrine fluorescence of any specific chromosome could be compared directly with the distribution of grains over the same chromosome on the autoradiograph. The Y chromosome fluoresced much more intensely than any of the other chromosomes, but there were no more grains over the Y chromosome than over the other chromosomes. Therefore the enhanced fluorescence of the human Y chromosome is not due to an increased binding of quinacrine.  相似文献   

7.
Fluorescent in situ hybridization allows for rapid and precise detection of specific nucleic acid sequences in interphase and metaphase cells. We applied fluorescent in situ hybridization to human lymphocyte interphase nuclei in suspension to determine differences in amounts of chromosome specific target sequences amongst individuals by dual beam flow cytometry. Biotinylated chromosome 1 and Y specific repetitive satellite DNA probes were used to measure chromosome 1 and Y polymorphism amongst eight healthy volunteers. The Y probe fluorescence was found to vary considerably in male volunteers (mean fluorescence 169, S.D. 35.6). It was also detectable in female volunteers (mean fluorescence 81, S.D. 10.7), because 5-10% of this repetitive sequence is located on autosomes. The Y probe fluorescence in males was correlated with the position of the Y chromosome cluster in bivariate flow karyotypes. When chromosome 1 polymorphism was studied, one person out of the group of eight appeared to be highly polymorphic, with a probe fluorescence 26% below the average. By means of fluorescent in situ hybridization on a glass slide and bivariate flow karyotyping, this 26% difference was found to be caused by a reduction of the centromere associated satellite DNA on one of the homologues of chromosome 1. The simultaneous hybridization to human lymphocyte interphase nuclei of biotinylated chromosome 1 specific repetitive DNA plus AAF-modified chromosome Y specific DNA was detected by triple beam flow cytometry. The bicolor double hybridized nuclei could be easily distinguished from the controls. When the sensitivity of this bicolor hybridization is improved, this approach could be useful for automatic detection of numerical chromosome aberrations, using one of the two probes as an internal control.  相似文献   

8.
H Zankl  H Seidel  K D Zang 《Humangenetik》1975,27(2):119-128
Twelve out of 88 cytogenetically examined meningiomas of female patients showed, in addition to the typical loss of a chromosome 22, a loss of 1 or more chromosomes of group C. Among them 8 tumors had less than 8% cells with Barr-body-like particles, whereas in one tumor 12% and in 3 others over 20% Barr bodies were found, which, based on control studies, were classified as sex-chromatin negative, partly positive, and positive, respectively. In one case the loss of an X chromosome was verified by Giemsa banding. In 6 out of 24 meningiomas of male origin, the chromosomal morphology and association pattern strongly indicated that besides the loss of a chromosome 22, the Y chromosome was also missing. Moreover, the loss of the male sex chromosome could be ascertained in 4 tumors by the conspicuous absence of Y fluorescence in interphase nuclei and in metaphase plates after fluorescence staining. The findings are discussed in connection with the gonosomal loss in other human tumors and in old age.  相似文献   

9.
The present paper aims to propose a new interpretation of the chromosome set marked by a translocation Y;2, discussed in a previous publication (Halferet al., 1971). The new interpretation, based on the fluorescence pattern, demonstrates that the breaking point of the Y must be very close to the telomere of the short arm.  相似文献   

10.
U Willhoeft  G Franz 《Génome》1996,39(5):884-889
The sex chromosomes of the tephritid fruit fly Ceratitis capitata (Wiedemann) are heteromorphic. The male-determining region was located on the Y chromosome by deletion mapping using unbalanced offspring from several translocation strains. In addition, we showed that only 15% of the Y chromosome is required for male determination and male fertility. Based on this result, we expected to find Y-chromosomal length polymorphism in natural populations. Using fluorescence in situ hybridization with two repetitive DNA probes that label the Y chromosome, no obvious size differences were detected in seven wild-type strains and three mutant strains. As the medfly is probably of East African origin, we also analyzed two wild-type strains established recently from pupae sampled in Kenya. The Y chromosomes show a polymorphism in the hybridization pattern of a repetitive Y-specific medfly clone. However, the overall size of the Y chromosome is similar to that of the other strains. Besides C. capitata, the tephritid fruit flies Ceratitis (Pterandrus) rosa Karsch and Trirhithrum coffeae Bezzi also emerged from pupae sampled in Kenya. Their karyotype was analyzed by C-banding. Furthermore, the ribosomal genes were mapped to the sex chromosomes in these two species. Key words : Ceratitis capitata, Tephritidae, C-Banding, FISH, rDNA.  相似文献   

11.
Fluorescence analysis after quinacrine staining in squashes of Varese wild stock male larval ganglia confirmed that the Y chromosome has four characteristic sections of bright fluorescence. In one Y/X and in one Y/III translocation the section of bright fluorescence on the short arm of the Y is no longer bright when translocated onto the terminal portion of the X and on the right arm of the III chromosome, respectively. Fluorescence analysis has also permitted the identification of a structurally abnormal Y chromosome in a cell line of Drosophila melanogaster established in vitro. The findings in the two translocations call for caution in the interpretation of structural rearrangements by fluorescence analysis.  相似文献   

12.
C. Halfer 《Genetica》1983,61(2):131-137
The analysis of inter-strain heterochromatin polymorphism in mitotic chromosomes of Drosophila melanogaster was extended to some stocks characterized by chromosomal mutations. In particular, the present investigation aims to compare, in the same cell, the quinacrine banding of two different Y chromosomes of male hybrids derived from crosses using special stocks. A direct comparison of homologous heteromorphic chromosomes in F1 hybrids provided additional evidence of differences in the fluorescence pattern of the Y chromosome, as well as in the length of the heterochromatin segment of the X chromosome.  相似文献   

13.
DNA methylation plays an important role for mammalian development. However, it is unclear whether the DNA methylation pattern is evolutionarily conserved. The Y chromosome serves as a powerful tool for the study of human evolution because it is transferred between males. In this study, based on deep-rooted pedigrees and the latest Y chromosome phylogenetic tree, we performed epigenetic pattern analysis of the Y chromosome from 72 donors. By comparing their respective DNA methylation level, we found that the DNA methylation pattern on the Y chromosome was stable among family members and haplogroups. Interestingly, two haplogroup-specific methylation sites were found, which were both genotype-dependent. Moreover, the African and Asian samples also had similar DNA methylation pattern with a remote divergence time. Our findings indicated that the DNA methylation pattern on the Y chromosome was conservative during human male history.  相似文献   

14.
A DNA-binding AT-specific oligopeptide antibiotic, distamycin A, was used as non-fluorescent counterstain in conjunction with the DNA-binding AT-specific fluorochrome 4′-6-diamidino-2-phenylindole (DAPI) to investigate the effect of the antibiotic on DAPI fluorescent banding of human chromosomes. Distamycin A-pretreated metaphases and interphase nuclei exhibited a significantly lower overall fluorescence intensity than DAPI controls. Chromosome arms were pale and intercalary DAPI bands (Q bands) were obliterated, but some specific regions of constitutive heterochromatin remained brightly fluorescent. These were mainly the constrictions of chromosomes 1, 9 and 16, the short arm of chromosome 15, and the distal part of the Y. The distamycin A/DAPI banding pattern appears to be comparable to that reported for anti-5-methylcytosine binding [11]. The observations are discussed as they relate to the roles of chromosomal DNAs and proteins in chromosome banding.  相似文献   

15.
Silene latifolia is a model plant for studies of the early steps of sex chromosome evolution. In comparison to mammalian sex chromosomes that evolved 300 mya, sex chromosomes of S. latifolia appeared approximately 20 mya. Here, we combine results from physical mapping of sex-linked genes using polymerase chain reaction on microdissected arms of the S. latifolia X chromosome, and fluorescence in situ hybridization analysis of a new cytogenetic marker, Silene tandem repeat accumulated on the Y chromosome. The data are interpreted in the light of current genetic linkage maps of the X chromosome and a physical map of the Y chromosome. Our results identify the position of the centromere relative to the mapped genes on the X chromosome. We suggest that the evolution of the S. latifolia Y chromosome has been accompanied by at least one paracentric and one pericentric inversion. These results indicate that large chromosomal rearrangements have played an important role in Y chromosome evolution in S. latifolia and that chromosomal rearrangements are an integral part of sex chromosome evolution.  相似文献   

16.
A late replicating X or Y chromosome can be detected by 33258 Hoechst staining and fluorescence microscopy in a large proportion of female or male mouse embryo cells, respectively, which have been cultured in medium containing 5-bromodeoxyuridine (BUdR) for part of one DNA synthesis period, The observed distribution of late replicating chromosome regions also includes centromeric heterochromatin and some quinacrine positive bands.  相似文献   

17.
Summary It was proved by quinacrine fluorescence that a translocation of part of chromosome No. 2 had taken place on the short arm of the Y chromosome. A minimal loss of material at the breakage-reunion point apparently results in hypogonadism, as seen in this patient.Aided by contract No. 20.122 F.W.G.O., Belgium.Aspirant N.F.W.O., Belgium  相似文献   

18.
Fluorescence in situ hybridization and Y ring chromosome   总被引:1,自引:0,他引:1  
Summary Investigations by fluorescence in situ hybridization and a Y-specific probe (Y190) of a male patient with a Y ring chromosome, 46,X,r(Y) showed four bright fluorescent spots within the ring. Thus, using this technique, it is possible to suggest that the ring originates from the duplication of the short arms of the Y chromosome.  相似文献   

19.
Hoechst 33258 banding of Drosophila nasutoides metaphase chromosomes   总被引:1,自引:1,他引:0  
Hoechst 33258 banding of D. nasutoides metaphase chromosomes is described and compared with Q and C bands. The C band positive regions of the euchromatic autosomes, the X and the Y fluoresce brightly, as is typical of Drosophila and other species. The fluorescence pattern of the large heterochromatic chromosome is atypical, however. Contrary to the observations on other species, the C negative bands of the large heterochromatic chromosome are brightly fluorescent with both Hoechst 33258 and quinacrine. Based on differences in the various banding patterns, four classes of heterochromatin are described in the large heterochromatic chromosome and it is suggested that each class may correspond to an AT-rich DNA satellite.  相似文献   

20.
A case with an apparently balanced reciprocal translocation between the long arm of the Y chromosome and the short arm of chromosome 1 t(Y;1)(q11.2;p34.3) is described. The translocation was found in a phenotypically normal male ascertained by infertility and presenting for intra-cytoplasmatic sperm injection treatment. Histological examination of testicular biopsies revealed spermatogenic failure. Chromosome painting with probes for chromosome 1 and for the euchromatic part of the Y chromsome confirmed the translocation of euchromatic Y chromosomal material onto the short arm of chromosome 1 and of a substantial part of the short arm of chromosome 1 onto the Y chromosome. Among the Y/autosome translocations, the rearrangements involving long arm euchromatin of the Y chromosome are relatively rare and mostly associated with infertility. Microdeletion screening at the azoospermia locus revealed no deletions, suggesting another mechanism causing infertility in this translocation carrier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号