首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The AcrAB system of Escherichia coli is a multidrug efflux system composed of an RND-type transporter AcrB and a periplasmic accessory protein AcrA, and pumps out a wide variety of lipophilic and amphiphilic inhibitors directly into the medium, presumably through the TolC outer membrane channel. AcrA, a highly elongated protein, is thought to bring the outer and inner membranes closer. It forms a trimer that interacts with a monomeric AcrB, which was shown by in vitro reconstitution to be a proton antiporter. Details of interaction between the  相似文献   

2.
Escherichia coli chromosome encodes several multidrug transporters. Despite their protective function against antibacterial agents, the specific physiological actions of these transporters are not fully understood. E. coli produces indole, a metabolite of tryptophan, under physiological conditions. Defined inactivation of the acrEF gene, the product of which is known as an energy-dependent multiple drug efflux pump, decreased indole excretion while reintroduction of the acrEF gene restored it. A DeltaacrEF mutant accumulated more intracellular indole than the parent. This mutant was more susceptible to the growth-inhibitory effect of indole than the parent. These results indicate that the AcrEF system plays a significant role in indole efflux.  相似文献   

3.
A family of bacterial transporters, the SET (sugar efflux transporter) family, has been recently reported (Liu, J. Y., Miller, P. F., Gosink, M., and Olson, E. R. (1999) Mol. Microbiol. 31, 1845-1851). In this study, the biochemical and cell biological properties of the three Escherichia coli members (SetA, SetB, and SetC) of the family are characterized. We show that both SetA and SetB can transport lactose and glucose. In addition, SetA has broad substrate specificity, with preferences for glucosides or galactosides with alkyl or aryl substituents. Consistent with the observed in vitro substrate specificities, strains that hyperexpress SetA or SetB are desensitized to lactose analogues as measured by induction of the lac operon. In addition, strains that hyperexpress SetA are resistant to the growth inhibitory sugar analogue o-nitrophenyl-beta-D-thiogalactoside. Strains disrupted for any one or all of the set genes are viable and show no defects in lactose utilization nor increased sensitivity to inducers of the lac operon and nonmetabolizable sugar analogues. The data suggest that the set genes are either poorly expressed under normal laboratory growth conditions or are redundant with other cellular gene products.  相似文献   

4.
Enhancement of the cellular exportation of heterologous compounds is an important aspect to improve the product yield in microbial cell factory. Efflux pumps can expel various intra- or extra-cellular substances out of microbial hosts and increase the cellular tolerance. Thus in this study, by using the hydrophobic sesquiterpene (amorphadiene) and diterpene (kaurene) as two model compounds, we attempted to improve isoprenoid production through systematically engineering the efflux pumps in Escherichia coli BL21(DE3). The pleiotropic resistant pumps, AcrAB-TolC, MdtEF-TolC from E. coli and heterologous MexAB-OprM pump from Pseudomonas aeruginosa, were overexpressed, assembled, and finely modulated. We found that overexpression of AcrB and TolC components can effectively enhance the specific yield of amorphadiene and kaurene, e.g., 31 and 37 % improvement for amorphadiene compared with control, respectively. The heterologous MexB component can enhance kaurene production with 70 % improvement which is more effective than TolC and AcrB. The results suggest that the three components of tripartite efflux pumps play varied effect to enhance isoprenoid production. Considering the highly organized structure of efflux pumps and importance of components interaction, various component combinations were constructed and the copy number of key components AcrB and TolC was finely modulated as well. The results exhibit that the combination TolC and TolC and AcrB improved the specific yield of amorphadiene with 118 %, and AcrA and TolC and AcrB improved that of kaurene with 104 %. This study indicates that assembling and finely modulating efflux pumps is an effective strategy to improve the production of heterologous compounds in E. coli.  相似文献   

5.
6.

Background

The TolC outer membrane channel is a key component of several multidrug resistance (MDR) efflux pumps driven by H+ transport in Escherichia coli. While tolC expression is under the regulation of the EvgA-Gad acid resistance regulon, the role of TolC in growth at low pH and extreme-acid survival is unknown.

Methods and Principal Findings

TolC was required for extreme-acid survival (pH 2) of strain W3110 grown aerobically to stationary phase. A tolC deletion decreased extreme-acid survival (acid resistance) of aerated pH 7.0-grown cells by 105-fold and of pH 5.5-grown cells by 10-fold. The requirement was specific for acid resistance since a tolC defect had no effect on aerobic survival in extreme base (pH 10). TolC was required for expression of glutamate decarboxylase (GadA, GadB), a key component of glutamate-dependent acid resistance (Gad). TolC was also required for maximal exponential growth of E. coli K-12 W3110, in LBK medium buffered at pH 4.5–6.0, but not at pH 6.5–8.5. The TolC growth requirement in moderate acid was independent of Gad. TolC-associated pump components EmrB and MdtB contributed to survival in extreme acid (pH 2), but were not required for growth at pH 5. A mutant lacking the known TolC-associated efflux pumps (acrB, acrD, emrB, emrY, macB, mdtC, mdtF, acrEF) showed no growth defect at acidic pH and a relatively small decrease in extreme-acid survival when pre-grown at pH 5.5.

Conclusions

TolC and proton-driven MDR efflux pump components EmrB and MdtB contribute to E. coli survival in extreme acid and TolC is required for maximal growth rates below pH 6.5. The TolC enhancement of extreme-acid survival includes Gad induction, but TolC-dependent growth rates below pH 6.5 do not involve Gad. That MDR resistance can enhance growth and survival in acid is an important consideration for enteric organisms passing through the acidic stomach.  相似文献   

7.
8.
9.
10.
Energetics of sodium efflux from Escherichia coli   总被引:6,自引:0,他引:6  
When energy-starved cells of Escherichia coli were passively loaded with 22Na+, efflux of sodium could be initiated by addition of a source of metabolic energy. Conditions were established where the source of energy was phosphate bond energy, an electrochemical proton gradient, or both. Only an electrochemical proton gradient was required for efflux from intact cells. These results are consistent with secondary exchange of Na+ for H+ catalyzed by a sodium/proton antiporter.  相似文献   

11.
12.
A steroid-hormone-dependent growth suppression was observed in Escherichia coli efflux-deficient backgrounds containing mutations in the major RND- and MFS-type tripartite multidrug efflux systems, AcrAB-TolC and EmrAB-TolC, respectively. In addition to their previously known natural steroid spectrum, which includes bile acids, both systems were shown to transport the hormones estradiol and progesterone, whereas hydrocortisone served as a substrate of only AcrAB-TolC. Furthermore, at least two other RND-type pumps, YhiV and AcrD, were capable of transporting such hormones when overexpressed on plasmid vectors (with some demonstrable specificity observed with AcrD). When this activity was examined in a wild-type background, cell-associated estradiol levels remained largely unaffected by competition with exogenous bile acids and hydrocortisone, in contrast to progesterone, which produced a significant modulation in estradiol uptake.  相似文献   

13.
The carbon skeleton of glucose is extensively randomized during conversion to cell wall glucosamine by Escherichia coli K-12. Exogenous glucosamine-1-(14)C is selectively oxidized, and isotope incorporation into cellular glucosamine is greatly diluted during assimilation. A mutant unable to grow with N-acetylglucosamine as a carbon and energy source was isolated from E. coli K-12. This mutant was found to be defective in glucosamine-6-phosphate deaminase. Glucosamine-1-(14)C and N-acetylglucosamine-1-(14)C were assimilated during the growth of mutant cultures without degradation or carbon randomization. Assimilated isotopic carbon resided entirely in cell wall glucosamine and muramic acid. Some isotope dilution occurred from biosynthesis, but at high concentrations (0.2 mm) of added N-acetylglucosamine nearly all cellular amino sugar was derived from the exogenous source. Growth of the mutant was inhibited with 1 mmN-acetylglucosamine.  相似文献   

14.
Regulation of sugar accumulation by Escherichia coli   总被引:4,自引:0,他引:4  
  相似文献   

15.
16.
A new family of sugar-inducible expression vectors for Escherichia coli.   总被引:8,自引:0,他引:8  
A set of 11 expression vectors was constructed, each of them harbouring a cloning cassette under the control of the araB promoter. Some of these vectors enable expression of foreign proteins in the cytoplasm, while others include a synthetic sequence coding for a very efficient secretion signal sequence. Other features are an f1 origin of replication (in plus or minus orientation) and a promoter(up) mutation that enhances the already very high level of expression from these vectors. With such a versatile vector family, cloning, sequencing and site-directed mutagenesis can be performed on the same vector, and the level of expression can be defined according to the specific constraints of a given protein.  相似文献   

17.
Consistent with the model of an H+ cotransport, amino acid uptake can be driven by a proton gradient generated by an efflux of sugar when the normal energy sources are suppressed. Heterologous countertransport is completely inhibited by uncouplers unlike homologous countertransport. Positive coupling was obtained with methyl thiogalactoside/proline, methyl thiogalactoside/phenylalanine, gluconate/proline; however, the poor coupling efficiency suggests a more complex sequence of reactions.  相似文献   

18.
19.

Background  

Efflux pump activity has been associated with multidrug resistance phenotypes in bacteria, compromising the effectiveness of antimicrobial therapy. The development of methods for the early detection and quantification of drug transport across the bacterial cell wall is a tool essential to understand and overcome this type of drug resistance mechanism. This approach was developed to study the transport of the efflux pump substrate ethidium bromide (EtBr) across the cell envelope of Escherichia coli K-12 and derivatives, differing in the expression of their efflux systems.  相似文献   

20.
The ability of Escherichia coli to colonize both intestinal and extraintestinal sites is driven by the presence of specific virulence factors, among which are the autotransporter (AT) proteins. Members of the trimeric AT adhesin family are important virulence factors for several gram-negative pathogens and mediate adherence to eukaryotic cells and extracellular matrix (ECM) proteins. In this study, we characterized a new trimeric AT adhesin (UpaG) from uropathogenic E. coli (UPEC). Molecular analysis of UpaG revealed that it is translocated to the cell surface and adopts a multimeric conformation. We demonstrated that UpaG is able to promote cell aggregation and biofilm formation on abiotic surfaces in CFT073 and various UPEC strains. In addition, UpaG expression resulted in the adhesion of CFT073 to human bladder epithelial cells, with specific affinity to fibronectin and laminin. Prevalence analysis revealed that upaG is strongly associated with E. coli strains from the B2 and D phylogenetic groups, while deletion of upaG had no significant effect on the ability of CFT073 to colonize the mouse urinary tract. Thus, UpaG is a novel trimeric AT adhesin from E. coli that mediates aggregation, biofilm formation, and adhesion to various ECM proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号