首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Plant species can respond to small scale soil nutrient heterogeneityby proliferating roots or increasing nutrient uptake kineticsin nutrient-rich patches. Because root response to heterogeneitydiffers among species, it has been suggested that the distributionof soil resources could influence the outcome of interspecificcompetition. However, studies testing how plants respond toheterogeneity in the presence of neighbours are lacking. Inthis study, individuals of two species,Phytolacca americanaL.andAmbrosia artemisiifoliaL. were grown individually and incombination in soils with either a homogeneous or heterogeneousnutrient distribution. Above-ground biomass of individuallygrown plants of both species was greater when fertilizer waslocated in a single patch than when the same amount of fertilizerwas distributed evenly throughout the soil. Additionally, bothspecies proliferated roots in high-nutrient patches.A. artemisiifoliaexhibitedlarger root:shoot ratios, increased nitrogen depletion fromnutrient patches, and a higher growth rate thanP. americana,suggestingA. artemisiifoliais better suited to find and rapidlyexploit nutrient patches. In contrast to individually grownplants, soil nutrient distribution had no effect on final above-groundplant biomass for either species when grown with neighbours,even though roots were still concentrated in high nutrient patches.This study demonstrates that increased growth of isolated plantsas a consequence of localized soil nutrients is not necessarilyan indication that heterogeneity will affect interspecific encounters.In fact, despite a significant below-ground response, soil nutrientheterogeneity was inconsequential to above-ground performancewhen plants were grown with neighbours.Copyright 1999 Annalsof Botany Company Phytolacca americana, pokeweed,Ambrosia artemisiifolia, ragweed, nutrient heterogeneity, root proliferation, plasticity, foraging, nutrient patches.  相似文献   

2.
The preferences of some woodland understorey species for ammoniumand nitrate were investigated by measuring the potential nitrification(conversion of ammonium to nitrate) in the rhizosphere comparedwith the bulk soil. Less acid-tolerant species, which usuallyprefer nitrate or a mixture of ammonium and nitrate in hydroponicculture, should have a higher potential nitrification in therhizosphere compared to the bulk soil due to a low uptake ofammonium (since ammonium is relatively immobile). Acid-tolerantspecies should have a high uptake of ammonium and thereby loweror equal potential nitrification in the rhizosphere comparedto the bulk soil. The hypothesis was tested in a field investigationof five understorey herb species, Deschampsia flexuosa, Convallariamajalis, Poa nemoralis, Geum urbanum andAegopodium podagrariaperformed in oak forests in southern Sweden. Overall, the twoless acid-tolerant species, Geum urbanum and Aegopodium podagraria,had high potential nitrification in the rhizosphere comparedto the bulk soil (indicating a relatively low uptake of ammonium),whilst the acid tolerant species, Deschampsia flexuosa andConvallariamajalis , had approximately equal potential nitrification inthe rhizosphere compared to the bulk soil (indicating a relativelyhigh uptake of ammonium). In the case of Poa nemoralis, a specieswhich grows in both acid and less acid soils, we found the potentialnitrification in the rhizosphere and in the bulk soil to besimilar at low inorganic nitrogen concentrations, but the difference(rhizosphere > bulk) increased when nitrification in thebulk soil was enhanced (i.e. when the nitrogen availabilityincreased). The potential nitrification in the bulk soil variedbetween 0 and 16 nmol g-1h-1and was positively correlated withpH. When species occurred at the same site, the potential nitrificationin the bulk soil tended to be lower for the acid tolerant species.Despite a large variation in potential nitrification, the methodoffers a possibility of measuring the preference of plants forammonium/nitrate in a soil system, under natural conditions.Copyright 2000 Annals of Botany Company Ammonium uptake, nitrate uptake, nitrogen preference, potential nitrification, rhizosphere, Deschampsia flexuosa, Convallaria majalis, Poa nemoralis, Geum urbanum, Aegopodium podagraria  相似文献   

3.
In a controlled greenhouse experiment young Deschampsia cespitosa,Grindelia integrifolia, Distichlis spicata and Salicornia virginicaplants were subjected to dry, field capacity, and saturatedsoil conditions. Plant height, stem diameter, stem density,number of leaves, number and length of internodes, and numberof primary and secondary branches varied among the three treatments.The quantity of aerenchyma in S. virginica was greatest in thesaturated treatment. In G. integrifolia the amount of secondaryxylem was greatest in the dry treatment. Maximum above- andbelow-ground biomass occurred under field capacity conditionsfor the four species. Root to shoot ratios of D cespitosa andS. virginica were not affected by changes in soil moisture whilethat of D. spicata was lowest in the saturated treatment andthat of G. integrifolia was lowest in the dry treatment. Key words: Salt marsh, soil moisture, plant structure  相似文献   

4.
A New Approach to Understanding the Calcifuge Habit of Plants   总被引:3,自引:1,他引:2  
Tyler  Germund 《Annals of botany》1994,73(3):327-330
Growth rate of the calcifuge plants Carex pilulifera, Deschampsiaflexuosa, Holcus mollis, Luzula pilosa, Nardus stricta, andVeronica officinalis, transplanted into an Ordovician limestonesoil of pH 8, increased by two to three times on addition of5 mol m-3 of CaHPO4 compared to untreated conditions. For Galiumsaxatile, however, P treatment was lethal and growth was possibleonly in soil supplied with Fe(III) citrate, which had littleor no effect on growth of the other six species. Phosphate treatmentof the limestone soil greatly increased plant uptake of P, whereasP concentration of shoots from untreated soil was very low andprobably highly deficient, compared to plants of field siteorigin. From this and two other recent studies it is now possibleto conclude that the calcifuge habit of plants, at least underclimatic conditions prevailing in northern Europe, is most oftendue to an inability of such plants to render the native phosphateof limestone soils available to plant uptake. Out of ten calcifugespecies tested, only one exception to this rule was identified.Copyright1994, 1999 Academic Press Carex pilulifera, Deschampsia flexuosa, Galium saxatile, Holcus mollis, Luzula pilosa, Nardus stricta, Veronica officinalis, calcifuge plants, phosphorus, iron, limestone soil, limiting factors  相似文献   

5.
Veronica spicata and Phleum phleoides are calcicole plants,mainly occurring on neutral or alkaline soil. An experimentof 16 weeks duration was performed in a glasshouse with theobjective of elucidating the influence of soil moisture levelon soil solution chemistry, and biomass concentrations and uptakeof mineral nutrients by the plants. Seven levels of moisture,corresponding to 35–85% of the water holding capacity(WHC) of the soil, were tested. Soil solution HCO3, P and Mnconcentrations, and pH, increased, whereas Ca, Mg and Zn concentrationsdecreased, with increasing soil moisture. Concentrations ofK were highest at 50–70% WHC. Concentrations and amountsof P, Zn and Mn in the two species were usually related to soilsolution concentrations; these are elements with low solubilityand availability in calcareous soils. Concentrations of nutrientsin biomass were more influenced by soil moisture in V. spicatathan inP. phleoides . This indicates that P. phleoides is morecapable of controlling its uptake of mineral nutrients, whereasV. spicata is sensitive to variations in soil moisture. It isconcluded that variation in soil moisture regime may greatlyinfluence concentrations of mineral nutrients in calcareoussoil solutions and their uptake by plants. Species able to utilizethese solubility fluctuations may have an advantage in competitionfor nutrients. Variation in soil moisture content might evenbe a prerequisite for adequate acquisition of mineral nutrientsand growth of plants on limestone soils, thereby influencingthe field distribution of native plants among habitats. Copyright1999 Annals of Botany Company Calcareous, calcicole, concentration, mineral, moisture, nutrient, Phleum phleoides, soil, soil solution, uptake, Veronica spicata, water.  相似文献   

6.
Pikas (Ochotona princeps: Lagomorpha) build caches of vegetation (“haypiles”), which serve as a food source during winter in alpine and subalpine habitats. Haypiles appear to degrade over time and form patches of nutrient-rich soils in barren talus and scree areas. We sampled soils underneath and next to haypiles, and plants growing on and near haypiles in an alpine cirque in northwestern Wyoming, USA, to determine the effects of pika food caches on N, C, and C/N ratios in soils and plants. We found that (1) haypile soils had significantly higher carbon and nitrogen levels and lower C/N ratios than both adjacent soils and soils in the general study area, (2) two of three plant species tested (Polemonium viscosum and Oxyria digyna) had significantly higher levels of tissue percent N when growing on haypile soils, and (3) total standing plant biomass at the study site increased with soil percent N suggesting that vegetation was nitrogen limited. Pikas may therefore function as allogenic ecosystem engineers by modulating nutrient availability to plants. Received: 5 July 1997 / Accepted: 30 November 1997  相似文献   

7.
《植物生态学报》2016,40(2):165
Aims The increase in atmospheric N deposition has accelerated N cycling of ecosystems, thus altering the structure and function of ecosystems, especially in those limited by N availability. Studies on the response of plant growth to artificial N addition could provide basic data for a better understanding of how the structure of grasslands in northern China responds to increasing N deposition. Methods We investigated the seasonal dynamics of plant growth of four species after 2-year multi-level N addition in a field experiment conducted in a desert steppe of Ningxia in 2011. Plant biomass and the relative growth rate (RGR) of the studied species were measured and their relationships with C:N:P ratios of plants (community and leaf levels) and soils were analyzed. Important findings Results in 2012 showed that 2-year N addition promoted the growth of the four species and the effects were different among growth forms and were species-specific. In general, the plant biomass of the studied species was significantly correlated with leaf N concentration, leaf N:P ratio, community N pool, soil total N content and soil N:P ratio, while only weak relationships were observed between plant biomass and C:N and C:P ratios of plants and soils. In contrast, there was a significant linear relationship between RGR and N:P ratios both of plants and soils.Our results suggest that short-term N addition promoted the accumulation of plant biomass, and the species-specific responses to stimulated N addition can directly affect the structure of the desert steppe ecosystem. Plant N:P ratio and soil N:P ratio could indicate nutrient limitation of plant growth to a certain extent: N addition increased soil N content and N:P ratio, and thus relieved N limitation gradually. Once more N is available to plants, the growth of plants and the accumulation of community N was stimulated in turn.  相似文献   

8.
四种荒漠草原植物的生长对不同氮添加水平的响应   总被引:2,自引:0,他引:2       下载免费PDF全文
大气氮(N)沉降增加加速了生态系统N循环, 从而会对生态系统的结构和功能产生巨大的影响, 尤其是一些受N限制的生态系统.研究N添加对荒漠草原植物生长的影响, 可为深入理解N沉降增加对我国北方草原群落结构的影响提供基础数据.该文基于2011年在宁夏荒漠草原设置的N沉降增加的野外模拟试验, 研究了两年N添加下4个常见物种(牛枝子(Lespedeza potaninii),老瓜头(Cynanchum komarovii),针茅(Stipa capillata)和冰草(Agropyron cristatum))不同时期种群生物量和6-8月份相对生长速率的变化特征.并通过分析物种生长与植物(群落和叶片水平)和土壤碳(C),N,磷(P)生态化学计量学特征的关系, 探讨C:N:P化学计量比对植物生长养分限制的指示作用.结果显示N添加促进了4个物种的生长, 但具有明显的种间差异性, 且这种差异也存在于相同生活型的不同物种间.总体而言, 4个物种种群生物量与叶片N浓度,叶片N:P,群落N库,土壤全N含量和土壤N:P存在明显的线性关系, 与植物和土壤C:N和C:P的相关关系相对较弱.几个物种相对生长速率与植物和土壤N:P也呈现一定程度的正相关关系, 但与其他指标相关性较弱.以上结果表明, 短期N沉降增加提高了植物的相对生长速率, 促进了植物生长, 且更有利于针茅和老瓜头的生物量积累, 从而可能会逐渐改变荒漠草原群落结构.植物N:P和土壤N:P对荒漠草原物种生长具有较强的指示作用: 随着土壤N受限性逐渐缓解, 土壤N含量和N:P相继升高, 可供植物摄取的N增多, 因而有利于植物生长和群落N库积累.  相似文献   

9.
The overall effect of a live soil inoculum collected from nature on plant biomass is often negative. One hypothesis to explain this phenomenon is that the overall net pathogenic effect of soil microbial communities reduces plant performance. Induced plant defenses triggered by the application of the plant hormones jasmonic acid (JA) and salicylic acid (SA) may help to mitigate this pathogenic effect of live soil. However, little is known about how such hormonal application to the plant affects the soil and how this, in turn, impacts plant growth. We grew four plant species in sterilized and inoculated live soil and exposed their leaves to two hormonal treatments (JA and SA). Two species (Jacobaea vulgaris and Cirsium vulgare) were negatively affected by soil inoculation. In these two species foliar application of SA increased biomass in live soil but not in sterilized soil. Two other species (Trifolium repens and Daucus carota) were not affected by soil inoculum and for these two species foliar application of SA reduced plant biomass in both the sterilized and live soil. Application of JA reduced plant biomass in both soils for all species. We subsequently carried out a multiple generation experiment for one of the plant species, J. vulgaris. In each generation, the live soil was a mixture of 10% soil from the previous generation and 90% sterilized soil and the same hormonal treatments were applied. The negative effects of live soil on plant biomass were similar in all four generations, and this negative effect was mitigated by the application of SA. Our research suggests that the application of SA can mitigate the negative effects of live soil on plant growth. Although the inoculum of soil containing a natural live soil microbial community had a strong negative effect on the growth of J. vulgaris, we found no evidence for an increase or decrease in negative plant-soil feedback in either the control or the SA treated plants. Also plant performance did not decrease consistently with succeeding generations.  相似文献   

10.
Plant-mediated soil legacy effects can be important determinants of the performance of plants and their aboveground insect herbivores, but, soil legacy effects on plant–insect interactions have been tested for only a limited number of host plant species and soils. Here, we tested the performance of a polyphagous aboveground herbivore, caterpillars of the cabbage moth Mamestra brassicae, on twelve host plant species that were grown on a set of soils conditioned by each of these twelve species. We tested how growth rate (fast- or slow-growing) and functional type (grass or forb) of the plant species that conditioned the soil and of the responding host plant species growing in those soils affect the response of insect herbivores to conditioned soils. Our results show that plants and insect herbivores had lower biomass in soils that were conditioned by fast-growing forbs than in soils conditioned by slow-growing forbs. In soils conditioned by grasses, growth rate of the conditioning plant had the opposite effect, i.e. plants and herbivores had higher biomass in soils conditioned by fast-growing grasses, than in soils conditioned by slow-growing grasses. We show that the response of aboveground insects to soil legacy effects is strongly positively correlated with the response of the host plant species, indicating that plant vigour may explain these relationships. We provide evidence that soil communities can play an important role in shaping plant–insect interactions aboveground. Our results further emphasize the important and interactive role of the conditioning and the response plant in mediating soil–plant–insect interactions.  相似文献   

11.
Rifamycin-resistant derivatives of plant growth promotingBacilluspolymyxa strains L6, Pw-2, and S20 were used to evaluate theinteraction of bacterial–mycorrhizal co-inoculation onpine and spruce seedling growth. We were particularly interestedin determining if the mechanism by which bacteria stimulatedseedling growth depended on the presence of ectomycorrhizae.Mycorrhizal inoculum was introduced by adding 2ml of one ofsix forest floor soil types originating from different spruceand pine stands to seedling containers. Mycorrhizal roots developedin 34% of pine and 27% of spruce seedlings treated with forestsoil, but no differences between forest soils were detected.Most mycorrhizae were formed byWilcoxinasp. (E-strain) (98%for spruce and 67% for pine); small numbers ofAmphinema-like,Myceliumradicis atrovirens, Suillus-like,Thelephora-like, andTuber-likemycorrhizae were also found on pine (27% in total).Thelephora-likefungi comprised 2% of spruce mycorrhize. In the absence of bacterialinoculum, spruce seedling biomass was positively correlatedwith the number of mycorrhizal root tips, but this trend wasnot detected in spruce inoculated with bacteria or in pine.Bacterial inoculation did not influence the mycorrhizal statusof seedlings, but all threeBacillusstrains stimulated growthof both conifer species. Root biomass, in particular, was significantlyenhanced by up to 18% compared with uninoculated controls. Mycorrhizalfungi improved the growth of spruce seedlings, but plant growthpromotion byBacilluswas similar for mycorrizal and non-mycorrhizalseedlings of both species. Our results suggest thatBacillusstrainsL6-16R, Pw-2R, and S20-R enhance conifer seedling growth througha mechanism unrelated to mycorrhizal fungi. Hybrid spruce; Picea glaucaxengelmannii ; lodgepole pine; Pinus contortavar.latifoliaEngelm.; inoculation; Bacillus polymyxa; seedling growth promotion; mycorrhizae  相似文献   

12.
Soil microbial communities follow distinct seasonal cycles which result in drastic changes in processes involving soil nutrient availability. The biomass of fungi has been reported to be highest during winter, but is fungal growth really occurring in frozen soil? And what is the effect of plant cover on biomass formation and on the composition of fungal communities? To answer these questions, we monitored microbial biomass N, ergosterol, and the amount of fungal hyphae during summer and winter in vegetated and unvegetated soils of an alpine primary successional habitat. The winter fungal communities were identified by rDNA ITS clone libraries. Winter soil temperatures ranged between -0.6°C and -0.1°C in snow-covered soil. We found distinct seasonal patterns for all biomass parameters, with highest biomass concentrations during winter in snow-covered soil. The presence of plant cover had a significant positive effect on the amount of biomass in the soil, but the type of plant cover (plant species) was not a significant factor. A mean hyphal ingrowth of 5.6 m g(-1) soil was detected in snow-covered soil during winter, thus clearly proving fungal growth during winter in snow-covered soil. Winter fungal communities had a typical species composition: saprobial fungi were dominating, among them many basidiomycete yeasts. Plant cover had no influence on the composition of winter fungal communities.  相似文献   

13.
TYLER  G.; ZOHLEN  A. 《Annals of botany》1998,81(3):455-459
Mineral nutrients of seeds constitute a significant source ofessential elements to seedlings and developing individuals ofvascular plants. In spite of their potential ecological significance,seed nutrient pools have attracted little attention with respectto calcifuge–calcicole behaviour of plants. The objectivesof this study were, therefore, to compare concentrations of13 macro- and micronutrients (K, Rb, Mg, Ca, Mn, Fe, Co, Cu,Zn, Mo, B, P and S) in seeds and leaves of 35 mainly herbaceousvascular plant species growing on both limestone (calcareous)and silicate (non-calcareous) soils. Concentrations of Rb andCo in seeds of plants originating from limestone soils were,on average, about half of those from silicate soils. Concentrationsof Mn, Mg, Zn and P of seeds were, or tended to be, lower orslightly lower in limestone-soil plants, whereas mean Ca andMo concentrations were higher. Comparing seed and leaf concentrationsof the same species from limestone and silicate soils generallydemonstrated a high P enrichment ratio, but a particularly lowK enrichment ratio in seeds, valid for both types of soil. Itwas also apparent that Fe and Mn, micronutrients which are lessreadily solubilized and taken up by plants on limestone soils,had significantly higher seed:leaf concentration ratios in plantsfrom limestone than from silicate soils, whereas the oppositewas true for Ca. This indicates a ‘strategy’ tosatisfy the demand of seedlings for elements which are lessreadily available in the soil.Copyright 1998 Annals of BotanyCompany Seed, leaf, plant, nutrient, content, calcareous, silicate, acid, soil.  相似文献   

14.
Although Acroptilon repens (L.) DC. (Russian knapweed) is known to concentrate zinc (Zn) in upper soil layers, the question of whether the elevated Zn has an allelopathic effect on restoration species has not been addressed. Experiments were conducted to investigate whether soils collected from within infestations of A. repens (high-Zn) inhibit the germination or growth and development of desirable restoration species, compared to soils collected adjacent to an A. repens infestation (low-Zn). Four bioassay species [Sporobolus airoides (Torrey) Torrey (alkali sacaton), Pseudoroegneria spicata (Pursh) A. Love (bluebunch wheatgrass), Psathyrostachys juncea (Fischer) Nevski (Russian wildrye) and A. repens] were germinated in a growth chamber and grown in a greenhouse in both soils and received treatments for the alleviation of Zn toxicity (P, Fe, Fe-oxide, and soil mixing) to isolate the effects of elevated soil Zn on plant performance. Percent germination, total plant biomass, tiller and stem number, inflorescence number, and tissue metal levels were compared among soil types and treatments for each species. There was no evidence from any of the indicators measured that high-Zn soils reduced plant performance, compared to low-Zn soils. Tissue Zn levels barely approached the lower range of phytotoxic levels established for native grasses. Older plants with longer exposure times may accumulate higher Zn concentrations. S. airoides and A. repens both had higher biomass in the high-Zn soil, most likely due to increased macronutrient (N and P) availability. As the Zn levels in the soils used in this study were much higher than any levels previously reported in soils associated with A. repens, it is unlikely that the elevation of soil Zn by A. repens will hinder germination or growth and development of desirable grasses during establishment.  相似文献   

15.
Partitioning of biomass between roots and different shoot partshas often been used to explain the response of plants to variationsin resource availability. There are still many uncertaintiesin the importance of this trait for plant performance, and clearguidelines on how partitioning should be quantified in relationto growth rate and resource supply are of fundamental importancefor such an understanding. This paper reports an attempt toshow how plant nitrogen status relates to root:shoot partitioningand other plastic responses, in a manner that can be used forquantitative predictions. The reactions to nitrogen limitationof five grassland plant species, with different ecological demands,were compared. The species used were the forbs Polygala vulgarisand Crepis praemorsa, and the grasses Danthonia decumbens, Agrostiscapillaris and Dactylis glomerata. The experiment was conductedin a climate chamber where the plants were grown hydroponically(1) under non-limiting nutrient conditions and (2) at a steady-statenitrogen limitation, which enabled the plants to express halfof their growth potential. The relative growth rate (RGR) ofthe species was strongly related to plant nitrogen concentration(PNC) and leaf area ratio (LAR), whereas the effects on netassimilation rate (NAR) were very small. Despite large differencesin maximum relative growth rate, the species showed remarkablesimilarities in dry matter partitioning between root and shoot.It is concluded that root:shoot partitioning can be treatedas a direct function of the relative resource limitation ofthe plant. The difficulty of attaining well-defined levels ofresource limitation in soil, other solid substrates and manyhydroponic systems may be the most important reason for thedivergent results in earlier studies. Better knowledge of soil-rootinteractions, and plant responses to the whole span of resource-supplylevels, is required for a thorough understanding of how nutrientslimit growth. Copyright 1999 Annals of Botany Company Growth rate, plant strategies, plasticity, partitioning, biomass, nitrogen, nutrient limitation, grassland.  相似文献   

16.
Native herbaceous plants have the potential for renaturalizing and recovering derelict soils, such as urban or anthropized soils.Ecological restoration following the establishment of a native wildflower meadow should lead to a reduction in management costs and to the preservation of native plant populations. This study was aimed at determining the ecological characteristics and the cultivation needs of 26 herbaceous species native to Italy and southern Europe in order to identify their landscape potential in low-maintenance conditions. The species were selected on the basis of their adaptation to unproductive soils in semi-natural and rural areas, and on their ornamental value, including their ability to attract insects. Mono-specific plots were set up in three different soils. Seed germination, seedling emergence, flowering dynamics, and plant growth were determined. Dormancy-breaking treatments were effective in improving the germination of most species. The percentage of field establishment and biomass appeared to be affected by the physical and chemical characteristics of the soil. Soil texture slightly affected seedling emergence, whereas soil texture and the C and N levels affected plant growth, the number of flowers and the duration of flowering. Dianthus carthusianorum, Verbascum blattaria, Matricaria chamomilla and Hypochoeris radicata developed a higher biomass per plant in the soils with a low nutrient content, indicating their adaptability to infertile soils. Daucus carota, Papaver rhoeas, Verbascum sinuatum, Coleostephus myconis produced a higher biomass per plant in the most fertile soil, where they appeared to show a higher potential when competing with other species. The ecological characteristics shown by the native plants are extremely important in terms of combining seeds of different species to create and to maintain semi-natural herbaceous communities in low-maintenance landscapes.  相似文献   

17.
When studying the effects of ultraviolet-B (UV-B) radiationon plants, a good measure of UV-B sensitivity is a decreasein dry weight, since this reflects the cumulative effect ofmany small disruptions in plant function. Measurements of chlorophyllconcentration and the level of UV-absorbing compounds are alsoused to gauge plant health during and after UV-B exposure. Whena variety of vegetable crop plants were screened for UV-tolerance,it was found that the levels of chlorophyll and UV-absorbingcompounds did not correlate with sensitivity. Biomass accumulationwas, however, correlated with UV-sensitivity; plants that accumulatedmore biomass over a 2-week period were more likely to be UV-Bsensitive. This suggests that a rapid growth rate renders plantsmore sensitive to the injurious effects of UV-B radiation. Copyright2000 Annals of Botany Company UV-B radiation, UV-absorbing compounds, chlorophyll, biomass production, UV-B sensitivity, Capsicum frutescens,Cucurbita pepo , Chicorium endivia, Lactuca sativa, Phaseolus vulgaris, Solanum melongena, Spinacia oleracea, Sinapis alba  相似文献   

18.
A pot experiment and a field experiment were conducted to investigate Cu-enriched composts made from Elsholtzia splendens plants as basal fertilizers to correct Cu deficiency in winter wheat (Triticum aestivum L.) grown in Cu-deficient soils. An application of the compost significantly increased plant height, biomass, grain yield, and 1000-grain weight. In the pot experiment, plant height and shoot biomass in the 2% Cu-rich compost treatment increased 0.8- and 5.2-fold compared with the chemical fertilizer treatment at the mature stage. Compared to chemical fertilizer control, the 2% Cu-enriched compost addition increased grain yield per pot by about 9.5-fold and 1000-grain weight by about 50%. In the field study, the compost also showed stimulatory effects on plant growth and grain yield. The results indicate that composting E. splendens plants grown in a Cu-contaminated soil and then applying the compost to a Cu-deficient soil may be an effective technique for the remediation of contaminated soils and redistribution of the copper as a plant nutrient for copper-deficient soils.  相似文献   

19.
Background and aimArbuscular mycorrhizal fungi (AMF) have an important role in plant-microbe interactions. But, there are few studies in which the combined effect of AMF with a stress factor, such as the presence of a metal, on plant species were assessed. This study investigated the effect of arbuscular mycorrhizal (AM) fungus Rhizophagus intraradices and other soil microbial groups in the presence of copper on three plant species in a microcosm experiment.MethodsTwo grass species Poa compressa and Festuca rubra and one herb species Centaurea jacea were selected as model plants in a pot-design test in which soils were artificially contaminated with copper. Treatments were bacteria (control), saprophytic fungi, protists, and a combined treatment of saprophytic fungi and protists, all in the presence or absence of the AM fungal species. After sixty days, plants were harvested and the biomass of grass and herb species and microbial respiration were measured.ResultsThe results showed almost equal above- and belowground plant biomass and microbial respiration in the treatments in the presence or absence of R. intraradices. The herb species C. jecea responded significantly to the soil inoculation with AM fungus, while grass species showed inconsistent patterns. Significant effect of AMF and copper and their interactions was observed on plant biomass when comparing contaminated vs. non-contaminated soils.ConclusionStrong effect of AMF on the biomass of herb species and slight changes in plant growth with the presence of this fungal species in copper-spiked test soils indicates the importance of mycorrhizal fungi compared to other soil microorganisms in our experimental microcosms.  相似文献   

20.
The lowland cultivation of Trifolium alpinum, a clover species found on acid soils in the Alps and suitable for the restoration of erosion areas at high altitudes, failed repeatedly in previous experiments. Three experiments were carried out in a controlled environment to elucidate the reasons for the failure and to develop possible cultivation strategies. In experiment I, T. alpinum was grown in an autochthonous soil from the Alps (high elevation) and in two allochthonous soils, a grassland soil from the Hercynian mountains (medium elevation), and an arable soil (low elevation), in which the seed propagation of T. alpinum had failed previously. The two allochthonous soils had lower contents of soil organic C and ergosterol, an indicator for fungal biomass, than the autochthonous high-elevation soil, but higher levels of exchangeable Ca and extractable P. Plants grown in the allochthonous soils achieved higher biomass and total N amounts per plant than those from the high elevation soil if inoculated with this autochthonous material to establish rhizobial infection. In the allochthonous high elevation soil, the growth of T. alpinum was P-limited as shown in experiment II. In experiment I, plants grown in the low elevation soil had a lower biomass and smaller number of active leaves at 120 days after emergence than those grown on the medium elevation soil. This difference can be explained by strong colonization with the phytophagous nematode Pratylenchus sp., as demonstrated in experiment III by comparing plant growth either in untreated or in autoclaved low-elevation soil. Successful propagation of T. alpinum at low elevation may be achieved through suitable inoculation with autochthonous soil biota, especially Rhizobia, and avoidance of soils infested by Pratylenchus species by choosing sites with acidic soil and ensuring adequate P-availability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号