首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
LIM蛋白家族的研究进展   总被引:5,自引:0,他引:5  
Zheng B  Wen JK  Han M 《生理科学进展》2002,33(4):305-308
LIM蛋白是分子结构中含有一个或多个LIM结构域的蛋白质家族,该家族中的蛋白质通过其LIM结构域与某些结构蛋白,激酶,转录调控因子等多种蛋白质相互作用,对某些基因的表达,细胞分化与发育,细胞骨架形成等发挥重要调控作用。本文介绍LIM蛋白家族的分类与功能,LIM蛋白及其与其他蛋白之间的相互作用,以及LIM蛋白在心血管系统中的作用。  相似文献   

2.
LIM蛋白的功能   总被引:1,自引:0,他引:1  
LIM结构域的主要作用是参与蛋白质之间的相互作用,目前已发现多种蛋白含有这种结构域,将它们统称为“LIM蛋白”。目前LIM蛋白主要分为4类:LIM同源异型结构域蛋白(LHX)、单纯LIM结构域蛋白(LMO)、LIM激酶以及其它LIM蛋白。LHX蛋白的功能主要是通过激活转录参与细胞命运的决定,LMO蛋白的功能主要是通过调节转录来控制细胞的异常增生,LIM激酶的作用则是参与细胞骨架的组织。因此,LIM蛋白在机体的生长发育中发挥着重要的作用,了解LIM蛋白功能将对于我们进一步解释相关的生理和病理现象、控制疾病的发生提供一定的基础。  相似文献   

3.
LIM同源盒转录因子在发育中的作用机制   总被引:2,自引:0,他引:2  
  相似文献   

4.
FHL(four and a half LIM domain)家族是含有4 个半LIM结构域的蛋白家族,现发现该家族由5 个成员,即FHL1、FHL2、FHL3、FHL4、FHL5 /ACT 组成,其表达具有组织特异性.它们通过LIM结构域与某些结构蛋白、激酶、转录调控因子等多种蛋白质相互作用,对某些基因的表达、细胞分化与发育、细胞骨架形成等发挥重要调控作用.FHL1(four and a half LIM domain 1)是FHL家族中表达最广泛的成员,尤其在骨骼肌和心肌中高表达.近年研究表明其参与某些病理过程,与心血管疾病、肌肉疾病、肿瘤疾病等相关.  相似文献   

5.
FHL是含有4个半LIM结构域的蛋白家族,体内现已发现5个成员,即FHL1、FHL2、FHL3、FHL4、FHL5/ACT,不同成员在组织中表达具有特异性。FHL家族通过LIM结构域与其他蛋白质相互作用,在各种肌细胞的生长与分化、肿瘤的发生发展以及基因的转录调节中发挥重要的作用。  相似文献   

6.
FHL(four and a half LIM domain)家族是含有4个半LIM结构域的蛋白家族,现发现该家族由5个成员,即FHL1、FHL2、FHL3、FHL4、FHL5/ACT组成,其表达具有组织特异性。简要介绍了FHL家族的组织分布、相互作用蛋白,及其在转录调节、肌细胞生长与分化、肿瘤发生发展中的作用。  相似文献   

7.
hhLIM是LIM蛋白家族成员之一,该蛋白质含有两个LIM结构域,在基因表达调节、细胞骨架组构及细胞肥大过程中发挥重要作用.构建hhLIM不同LIM结构域的突变体,探讨其两个LIM结构域在与actin相互结合中的作用及其可能机制.GST-pull down和hhLIM及其突变体与actin细胞定位关系的免疫荧光分析结果表明,C端的LIM结构域2是hhLIM与actin结合所必需的,该结构域中的两个Cys置换为Ser后可使hhLIM结合actin的功能完全丧失,N端的LIM结构域1突变使hhLIM结合actin的能力下降.F-actin交联实验结果显示,hhLIM通过LIM结构域2与actin直接结合并起到交联F-actin的作用.结果表明,LIM结构域2在hhLIM与actin相互作用及调节actin细胞骨架组构中起决定性作用.  相似文献   

8.
FHL(four-and-a-half-LIM domain)是含4(1/2)个LIM结构域富含半胱氨酸的细胞骨架蛋白,LIM是一种在C.elegans线虫的Lin-1和Mec-3基因及大鼠Isl-1基因编码的DNA结合蛋白中分离鉴定出来的基因序列,LIM取三个基因的首字母而成。FHL家族含FHL-1-5五个成员,而FHL-1-3最早发现在心脏的发育过程中起重要作用,后面发现在肺动脉高压中有促进增殖、迁移等作用。本文就FHL家族和肺动脉高压关系作一综述,阐明FHL蛋白在PH进程中的重要作用。  相似文献   

9.
李康  戴爱国  蒋永亮 《生物磁学》2014,(18):3581-3584
FHL(four-and-a-half-LIM domain)是含4(1/2)个LIM结构域富含半胱氨酸的细胞骨架蛋白,LIM是一种在C.elegans线虫的Lin-1和Mec-3基因及大鼠Isl-1基因编码的DNA结合蛋白中分离鉴定出来的基因序列,LIM取三个基因的首字母而成。FHL家族含FHL-1-5五个成员,而FHL-1-3最早发现在心脏的发育过程中起重要作用,后面发现在肺动脉高压中有促进增殖、迁移等作用。本文就FHL家族和肺动脉高压关系作一综述,阐明FHL蛋白在PH进程中的重要作用。  相似文献   

10.
FHL2是仅有四个半LIM结构域(FHL)蛋白家族的成员,目前在FHL蛋白家族中研究最为广泛。FHL2作为重要的衔接蛋白和支架蛋白,主要通过LIM结构域介导蛋白分子间的相互作用以实现其生物学功能。Fhl2基因在转录水平受多种肿瘤相关基因的调控,如p53,血清应答因子等。FHL2与恶性肿瘤的关系是近年来的研究热点,目前认为FHL2能够作为癌蛋白及抑癌蛋白通过不同机制广泛影响乳腺癌、胃肠道肿瘤、肝癌、前列腺癌等肿瘤的发生发展,并且在不同肿瘤中的表达具有组织特异性。本文就FHL2的结构特点、功能、转录调控及与肿瘤的关系几个方面展开综述,从而明确FHL2在不同肿瘤中所发挥的作用及其分子生物学机制将会为治疗相关肿瘤提供新的干预靶点。  相似文献   

11.
棉花LIM结构域基因(GhLIM1)的克隆和表达分析   总被引:15,自引:3,他引:12  
LIM结构域蛋白是一个重要的发育调控因子,参与基因转录,细胞骨架建成和信号传导等许多发育调控过程,胞质骨架是形成和稳定细胞形态以及传递物质,能量和信息的重要成分。为研究棉花纤维细胞发育过程中胞质骨架的形成和作用机理,通过棉花纤维EST序列整合,从陆地棉徐州142胚珠(含纤维)中扩增并克隆出棉花LIM结构域基因的编码区段。该棉花LIM结构域基因(GhL1M1)长848bp,包含一个570bp的开放阅读框,推导的氨基酸序列(189个氨基酸)与拟南芥,烟草和向日葵的LIM结构域蛋白有极高的同源性,而且两个LIM结构域完整,RT-PCR和Northerm杂交分析表明,该基因(GhL1M1)在陆地棉的根,茎尖,上胚轴,叶片,花蕾,花药,胚珠和不同发育时期的陆地棉纤维(4DPA、12DPA、18DPA)以及海岛棉纤维(18DPA)和中棉纤维(12DPA)中均有表达,但GhL1M1基因在茎尖,纤维和有纤维的胚珠中表达量更高,因此GhL1M1基因应与棉花纤维发育有密切关系。  相似文献   

12.
小立碗藓冷驯化相关基因Pp-LIM only A的克隆与表达   总被引:2,自引:0,他引:2  
植物经历冷驯化后抗冻能力会有所提高.利用cDNA-AFLP方法从经过0℃冷驯化处理的小立碗藓中筛选到差异表达的Pp-LIM only A基因片段.cDNA和基因序列比较分析表明此基因含有7个内含子和8个外显子,编码由345个氨基酸残基组成的蛋白质,其中只含有一个LIM结构域,与动物蛋白质PDZ/LIM家族有很高的同源性,推测是一种新的植物LIM蛋白.实时定量PCR分析显示其在冷驯化6 h后表达量即开始明显增加,并随着冷驯化时间的延长表达量大幅度提高.Pp-LIM only A蛋白可能通过LIM结构域对细胞骨架的作用而影响了细胞膜的稳定性,本研究对其在抗冻中的作用作了进一步讨论.  相似文献   

13.
人Boule基因启动子区结合蛋白的生物信息学分析   总被引:1,自引:0,他引:1  
目的:对精子发生RNA结合蛋白Boule基因启动子区结合蛋白进行生物信息学分析。方法:从基因参考序列数据库获取Boule基因启动子区序列,使用TFSEARCH程序对启动子序列中的转录因子结合位点进行预测。结果:成功获得长度为2kb的人Boule基因启动子区序列。该启动子区Thresholdscore〉90的共有60个转录因子结合位点,涉及sox家族、GATA结合蛋白家族、热休克因子家族、锌指蛋白Kruppel家族、POU家族、runt家族、同源异型框基因家族、TALE类同源结构蛋白家族、转录因子螺旋环螺旋家族、IKAROS家族、FOX家族11个家族的转录因子和3个TATAbox。结论:Boule基因表达的调控是在一定时间或空间上、一种或多种调节蛋白作用的复杂过程。调控Boule基因表达的转录因子绝大部分与胚胎发育、性别决定、个体生长密切相关。  相似文献   

14.
FHL2转录激活结构域的定位   总被引:2,自引:0,他引:2  
LIM蛋白家族成员FHL2 (fourandhalfLIMdomainprotein)在转录调节、细胞凋亡及肿瘤的发生发展中都起着重要作用。利用GAL4转录因子中的DNA结合结构域 (DBD)和含有与DBD结合序列的荧光素酶报告基因(GAL4 LUC)构建了哺乳动物细胞转录激活系统 ,并利用该系统定位了FHL2的转录激活结构域。首先将GAL4 DBD序列以正确读框插入到pcDNA3载体的多克隆位点中 ,构建成真核表达载体pDBD ,再将野生型FHL2及其不同片段以正确读框与pDBD中GAL4 DBD序列融合 ,构建成野生型FHL2及其缺失突变体表达载体。将这些表达载体分别瞬时转染 2 93T胚胎肾细胞 ,野生型FHL2及其缺失突变体都得到了表达。利用GAL4 荧光素酶报告基因对野生型FHL2及其不同突变体的转录激活活性检测表明 ,在 2 93T胚胎肾细胞和乳腺癌MCF 7细胞中 ,野生型FHL2具有转录激活活性 ,缺失N端半个LIM结构域使FHL2转录激活活性降低 ,缺失C末端第二个LIM结构域对FHL2的转录激活功能影响不大 ,缺失C末端最后一个LIM结构域则使FHL2的转录激活功能完全丧失 ,而C末端缺失 2个LIM结构域使FHL2转录激活活性又有所恢复。这说明FHL2C末端最后一个LIM结构域对其转录激活功能是必需的 ,而C末端第二个LIM结构域可能对FHL2的转录激活功能有负调控作用 ,这种负调控作用取决于  相似文献   

15.
LIM结构域蛋白KyoT相互作用分子的筛选   总被引:1,自引:2,他引:1  
李荣  王冀姝  孙强  王键  杨曦  黄红燕  周鹏  韩骅 《遗传学报》2002,29(2):175-180
  相似文献   

16.
LIM结构蛋白是真核生物中一类重要的转录因子,参与基因转录、细胞骨架建成和信号传导等许多发育调控过程。该研究利用RT-PCR方法从棉花陆地棉耐盐材料H15中克隆得到了1个新的转录因子GhLIMa(GenBank登录号为KF601208)。GhLIMa基因包含一个627bp的开放阅读框,编码208个氨基酸残基,分子量为23.2kD。生物信息学分析发现,GhLIMa基因含有2个完整的LIM结构域,GhLIMa与可可、蓖麻、欧洲大叶杨中该蛋白的亲缘关系最近,相似性在78%以上。实时定量PCR分析显示,盐诱导后在棉花耐盐材料‘H15’的根和叶中GhLIMa基因表达量均比敏盐材料‘中棉所12’高,而且响应时间早,说明GhLIMa基因与棉花耐盐性密切相关,推测GhLIMa基因在棉花响应盐胁迫过程中具有重要作用。  相似文献   

17.
WRKY转录因子超家族的研究   总被引:5,自引:0,他引:5  
郝中娜  陶荣祥 《生命科学》2006,18(2):175-179
WRKY转录因子是一类能与W盒特异结合的DNA结合蛋白,最初从植物中分离获得,该家族因子均含有一个或两个保守的WRKY结构域,该结构域约含有60个氨基酸残基,在WRKYGQK残基核心序列之后接有一个C2H2或C2HC类型的锌指基序。WRKY转录因子在高等植物中形成一个庞大的基因家族,基因数量众多。大量的实验证据说明,WRKY蛋白参与植物的抗病反应,并影响植物的衰老、抗胁迫能力以及生长和发育。  相似文献   

18.
FHL(four and half LIM domains)是LIM-only蛋白家族的重要成员。FHL家族包括FHLl-FHL5共5个成员,它们具有组织特异性。研究发现,FHL参与转录调节、信号转导、凋亡等,是细胞生长、分化的重要调节因子。已证实FHLl、FHL2与不同组织来源肿瘤的发生和发展有关。FHL表达水平是某些肿瘤预后的相关因素。研究FHL与肿瘤的关系,有利于阐明肿瘤的病理生理机制。  相似文献   

19.
MYB转录因子家族是植物中数量最多的转录因子家族之一,在植物次生代谢调节、信号转导和抗逆等生物过程起重要作用。根据MYB转录因子结构域组成差异可分4个亚家族:即1R-MYB(MYB-relaed)、R2R3-MYB、3R-MYB和4R-MYB。其中,R2R3-MYB亚家族数量最多,可进一步分为22个亚组;利用生物信息学分析杨树MYB转录因子蛋白序列的保守结构域、系统发生、基因组定位、氨基酸组成和理化性质等;参照拟南芥MYB转录因子功能,预测杨树MYB转录因子功能;基于84K杨转录组测序和RT-qPCR分析,从301个杨树MYB转录因子基因中筛选出69个应答盐胁迫基因(P≤0.05)。其中,上调表达基因32个,下调表达基因37个。该研究可为进一步研究杨树MYB家族基因功能提供参考依据。  相似文献   

20.
PIAS(protein inhibitor of activated STAT)家族蛋白是作为活化的STAT的转录活性抑制蛋白被发现的,有5个成员,5种PIAS蛋白都具有3个共同的结构域特征,即N端SAP结构域,中间的锌结合模体Zn-RF和C端的富含丝氨酸/苏氨酸区域。现发现PIAS蛋白不但与激活的STAT蛋白相互作用,还与核内激素受体、TGFβ通路的Smad、Wnt通路的LEF1、细胞周期相关的P53等转录因子和HDAC、FAK等非转录因子相互作用,并调节转录因子的活性。PIAS对转录因子活性的调节有正或负调节,这决定于不同的PIAS分子与不同的转录因子的相互作用。随着对PIAS的研究增多,也引发出许多重要问题需待未来研究去回答。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号