首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effect of single and protracted alimentary satiation on predatory aggression and content of serotonin and its metabolite 5-hydroxyindoleacetic acid in the amygdalar complex and hypothalamus was studied in mink--a representative of predators. A single alimentary satiation was not accompanied by any marked changes in serotonin metabolism and predatory behaviour. A long-term alimentary satiation significantly heightened the content of the 5-hydroxyindoleacetic acid in the lateral hypothalamus and amygdala without any changes in serotonin level, testifying to a high synthesis of serotonin with its simultaneous intensive destruction. Long-term satiation also greatly increased the latencies of aggression and killing the victim. It is suggested that serotonin is one of endogenous factors controlling predatory behaviour in predators, and this control is realized in interrelation with feeding behaviour.  相似文献   

2.
Inherited and modificational changes of the stress reactivity in two outbreed stocks of wild Norway rats trapped in nature and selected for behaviour were studied. During 18 generations the rats of one stock were selected for the lack of defensive behaviour in the glove test (tame), while in another stock the aggressiveness was maintained by the selection (aggressive). Interstock differences in the brain noradrenaline mechanisms were observed. The emotional stress reactivity of the tame animals was decreased, in comparison with the aggressive ones. Definitive stress reactivity of adult rats was modified by injections of hydrocortisone to their mothers on the 16 and 18 days of gestation. Hormonal treatment changed noradrenaline mechanisms and decreased the reaction to emotional stressor in aggressive rats. The modified level of the stress reactivity of aggressive rats was similar to the definitive level of the tame ones. Hormonal treatment did not modify stress reactivity in tame rats. Thus, the phenotype only emerging in aggressive rats, as a result of hormonal modification, is the inherited norm of the tame animals. However, due to rat selection for the lack of defensive behaviour towards the man, high corticosteroid level in the blood of pregnant females, an external developmental factor, in respect to the fetus, loses regulatory function during the development of the neuroendocrine mechanisms of the stress reaction.  相似文献   

3.
A study was made of a change in the aggressive and sexual behaviour of albino rats under the influence of ablation of the n. medianus raphe whose serotonin-containing units send ascending projections to the forebrain. Ablation of the nucleus produced a drop in the serotonin level in the forebrain, and aggressiveness to mice, which was much more pronounced in the male than in the female animals. Intraspecial aggressiveness between animals of the same sex and the sexual behaviour of the male rats did not change. It has been assumed that n. medianus raphe exerts an inhibitory influence on the manifestation of aggression of the "predatory" animal.  相似文献   

4.
Aggressive behavior is not a unitary trait, and different stimuli/situations elicit different kinds of aggressive behavior. According to numerous data the genotype plays a significant role in the expression of aggressive behavior. However, it remains unclear how genetic predisposition to one kind of aggression is linked with other kinds of aggressive behavior, especially pathological aggression (infanticide). Here, we report on our investigation of the expression of defensive, offensive, predatory and asocial aggression in wild rats selectively bred for 85 generations for either a high level or a lack of aggression towards humans. We found that those rats genetically predisposed to a high level of defensive aggression showed decreased social behavior and increased pathological aggressive behavior towards juvenile males. The highly aggressive rates showed a reduced latency time of attack and an increased latency time of the first social contact. Rats genetically predisposed to defensive aggression demonstrated increased predatory aggression—latency time of muricide was shorter in highly aggressive than in tame animals. At the same time, both lines of rats did not differ significantly in intermale aggression. We conclude that the data indicate a close relation between defensive, predatory and pathological aggressive behavior that allows us to suggest that similar genetic mechanisms underlie these types of aggressive behavior.  相似文献   

5.
On the role of brain serotonin system in the pathway from gene to behaviour   总被引:1,自引:0,他引:1  
This paper concentrates on involvement of protein elements in the brain neurotransmitter serotonin system (key enzymes in serotonin metabolism and 5-HT(1A) receptors) in the genetic control of behaviour. The data were obtained using Norway rats selected for more that 50 generations for lack of aggressive response and for aggressive behaviour towards humans (fear-induced aggression), inbred mouse strains, and MAO A knockout mice. The review provides converging line of evidence that: 1) brain serotonin contributes to critical mechanism underlying genetically defined individual differences in aggressiveness, and 2) genes encoding pivotal enzymes in serotonin metabolism (tryptophan hydroxylase, MAO A) and 5-HT(1A) receptors belong to a group of genes that modulate aggressive behaviour.  相似文献   

6.
Predatory (towards crickets), intermale, and maternal aggression were examined in four replicate lines of mice that had been selectively bred for high wheel-running (S) and in four random-bred control lines (C). In generation 18, individual differences in both predatory and intermale aggression were significantly consistent across four trial days, but predatory and intermale aggression were uncorrelated both at the individual level and among the eight line means. Latencies to attack crickets were significantly lower in S lines as a group. Intermale aggression, however, did not differ between S and C lines. S lines were significantly smaller in body mass, but did not differ in either testes mass or plasma testosterone. In generations 28 and 30, respectively, S and C lines did not differ in either maternal or intermale aggression. However, significant differences among the individual lines were found for maternal aggression, and one S line exhibited an extremely high mean time of aggression (>120 sec for a 5-min test). Maternal and intermale aggression were not correlated among the eight line means or at the level of individual variation. Overall, our results suggest: (1) predatory aggression and voluntary wheel-running are positively related at the genetic level; (2) predatory and intermale aggression are unrelated at a genetic level; and (3) maternal and intermale aggression are not tightly related at the genetic level. Possible relationships between predatory aggression, dopamine, and wheel-running behavior are discussed.  相似文献   

7.
In humans and other primates low cerebrospinal fluid (CSF) levels of the major serotonin (5-HT) metabolite 5-hydroxyindoleacetic acid (5-HIAA) have been correlated to high aggressiveness. This finding forms the basis of the 5-HT deficiency hypothesis of aggression. Surprisingly, this correlation has not been confirmed in rodents so far, while manipulation studies aimed to investigate the link between 5-HT and aggressive behaviour are mostly carried out in rodents. In this study the relation between aggression and CSF monoamine and metabolite concentrations was investigated in male Wildtype Groningen rats. In sharp contrast to the hypothesis and our expectation, a clear positive correlation was found between the individual level of trait-like aggressiveness and CSF concentrations of 5-HT, 5-HIAA, norepinephrine (NE), dopamine (DA), and 3,4-dihydroxyphenylacetic acid (DOPAC). Shortly after the acute display of aggressive behaviour (as a state-like phenomenon), decreased 5-HT levels and an increase in 5-HIAA/5-HT ratio and NE concentrations were found. Surprisingly, pharmacological challenges known to influence 5-HT transmission and aggressive behaviour did not affect CSF 5-HT and 5-HIAA concentrations, only the NE level was increased. Lesioning 5-HT terminals by 5,7-dihydroxytryptamine (5,7-DHT) administration caused a decrease in CSF 5-HT and 5-HIAA, but without affecting aggressive behaviour. The observed positive correlation between CSF 5-HIAA and trait aggressiveness makes it questionable whether a direct extrapolation of neurobiological mechanisms of aggression between species is justified. Interpretation of CSF metabolite levels in terms of activity of neural substrates requires a far more detailed knowledge of the dynamics and kinetics of a neurotransmitter after its release.  相似文献   

8.
Reaction of freezing (a pronounced motor inhibition, catalepsy) is suggested to be associated with fear in response to predator appearance or attack of aggressive congener. In order to evaluate association between a kind of behavior such as freezing, aggressiveness and fear, the effects of high predisposition to catalepsy on intermale aggression, acoustic startle response and anxiety-related behavior in the light/dark test were studied. Mice of 14th and 15th generations of selective breeding for high predisposition to catalepsy were characterized by a significant decrease in aggressive behavior. The marked decrease in the percentage of aggressive mice in the catalepsy-prone strain is consistent with the notion that aggression and catalepsy represent two alternative kinds of behavior in intermale conflicts. A positive correlation was found between high predisposition to catalepsy and startle reflex amplitude (but not anxiety-related behavior).  相似文献   

9.
Content of dopamine in the striatum; of serotonin, 5-hydroxyindolacetic acid and noradrenaline in the hypothalamus, striatum and midbrain was studied in three groups of minks from population of an animal farm, differing by their reaction to humans (cowardly, calm, aggressive). The reaction to humans was estimated by a system of marks at the attempt to catch the mink with a mitten. Aggressive animals had a lowered level of serotonin in the hypothalamus and striatum, a lesser content of serotonin metabolite--5-hydroxyindolacetic acid in the striatum. Minks of different groups did not differ by noradrenaline content, but dopamine level in the striatum of cowardly minks was higher than in calm and aggressive animals. Conclusion is made that polymorphism of behaviour corresponds to polymorphism of the state of monoaminergic systems.  相似文献   

10.
In two groups of gray rats--nonaggressive ones, selected by the lack of aggression towards investigator, and aggressive animals--studies have been made on the relationship between noradrenaline system of the brain and the activity of pituitary-testicular system. In tame rats, less evident dependence of the gonadal activity on activating effect of noradrenaline was noted. After injection of norepinephrine, dopamine, and serotonin in the same brain region. *****were less significant in tame rats as compared to those in aggressive ones. The disturbed relationship between noradrenaline system of the brain and hypothalamo-pituitary-testicular complex is presumably one of the causes of associate changes in the reproductive system during selection for the domestic type of behaviour.  相似文献   

11.
Dibutyryl cGMP (0 to 100 μg), infused intraventricularly in rats and mice, produced dose-dependent increases in brain cGMP, facilitation of shock-induced rat fighting and predatory cricket-killing, and inhibition of isolation-induced mouse fighting. The changes in rat aggression with 25 μg and in mouse aggression with 50 μg were not related to sedation or motor disturbance, since locomotor activity counts were normal as were brain levels of norepinephrine, dopamine, dihydroxyphenylacetic acid, serotonin, and 5-hydroxyindoleacetic acid. These changes seem to be related to an intracellular action of cGMP and appear to be specific for the guanine cyclic nucleotide.  相似文献   

12.
Domestication of wild animals alters the aggression towards humans, brain monoamines and coat pigmentation. Our aim is the interplay between aggression, brain monoamines and depigmentation. The Hedlund white mutation in the American mink is an extreme case of depigmentation observed in domesticated animals. The aggressive (?2.06 ± 0.03) and tame (+3.5 ± 0.1) populations of wild‐type dark brown color (standard) minks were bred during 17 successive generations for aggressive or tame reaction towards humans, respectively. The Hedlund mutation was transferred to the aggressive and tame backgrounds to generate aggressive (?1.2 ± 0.1) and tame (+3.0 ± 0.2) Hedlund minks. Four groups of 10 males with equal expression of aggressive (?2) or tame (+5) behavior, standard or with the Hedlund mutation, were selected to study biogenic amines in the brain. Decreased levels of noradrenaline in the hypothalamus, but increased concentrations of the serotonin metabolite, 5‐hydroxyindoleacetic acid and dopamine metabolite, homovanillic acid, in the striatum were measured in the tame compared with the aggressive standard minks. The Hedlund mutation increased noradrenaline level in the hypothalamus and substantia nigra, serotonin level in the substantia nigra and striatum and decreased dopamine concentration in the hypothalamus and striatum. Significant interaction effects were found between the Hedlund mutation and aggressive behavior on serotonin metabolism in the substantia nigra (P < 0.001), dopamine level in the midbrain (P < 0.01) and its metabolism in the striatum (P < 0.05). These results provide the first experimental evidence of the interplay between aggression, brain monoamines and the Hedlund mutation in the American minks.  相似文献   

13.
Selective agonist of 1A subtype of serotonine receptors ipsapirone inhibited manifestation of affective kinds of aggression in wild and domesticated rats. Administration of ipsapirone (10 mg/kg) decreased the number of aggressive attacks of wild and domesticated rats in the test of shock-induced aggression and blocked manifestation of defensive reaction to the experimenter in wild rats. Neophobia in wild rats decreased under the influence of ipsapirone. At the same time ipsapirone did not change mouse-killing behaviour either in wild or in domesticated rats. Probably, 5-HT1A receptors the aggressive regulate reaction, which are parts of the complex of defensive behaviour of the wild animals.  相似文献   

14.
Aggressive and submissive behaviour was studied in CBA/Lac and C57BL/6J strains of mice during long-term intermale interaction with syngenic partners. It was shown that the aggressiveness of aggressive C57BL/6J animals was more expressive than that of CBA/Lac' ones. The structure of submissive behaviour of this strains' encounters was also significantly different. Prolonged-defeat experience changed the character of submissive behaviour of C57BL/6J, but not of CBA/Lac' ones. Aggression of dominant animals considerably decreased in both strains. It is suggested that CBA/Lac and C57BL/6J mice had different mechanisms of suppression of intermale aggression.  相似文献   

15.
The hypothesis was tested that one of the critical mechanisms underlying genetically determined aggressiveness involves brain serotonin 5-HT(1A)-receptors. The expression of 5-HT(1A)-receptor mRNA in brain structures and functional correlate for 5-HT(1A)-receptors identified as 8-OH-DPAT-induced hypothermia were studied in Norway rats bred over the course of 59 generations for the low and high affective (defensive) aggressiveness with respect to man and in highly aggressive (offensive) MAO A-knockout mice (Tg8 strain). Considerable differences between the aggressive and the nonaggressive animals were shown. Agonist of 5-HT(1A)-receptor 8-OH-DPAT (0.5 mg/kg for rats and 2.0 mg/kg for mice, i.p.) produced a distinct hypothermic reaction in nonaggressive rats and mice and did not affect significantly the body temperature in aggressive animals. In aggressive rats, a significant reduction of the expression of 5-HT(1A)-receptor mRNA was found in the midbrain. In Tg8 mice, 5-HT(1A)-receptor mRNA level was increased in the frontal cortex and amygdala and not changed in the hypothalamus and the midbrain. The results provide support for the idea that brain 5-HT(1A)-receptors contribute to the genetically determined individual differences in aggressiveness.  相似文献   

16.
Territoriality and social organization were examined in relation to different genetic dispositions for aggressive behaviour. The animals used in the study were male mice of the 51st and 52nd generation of selection for high (Turku Aggressive, TA) and low (Turku Non-Aggressive, TNA) levels of aggressiveness. The level of aggressiveness of the animals was assessed by means of individual tests with non-aggressive standard opponents, after which they were allowed to form individual territories in a 102 times 204 times 90 cm enclosure. TA and TNA males were placed in different enclosures. After 2 wk, when the partitions between individual pens were removed, the behaviour of the animals was observed for a 7-d period. Excessive fighting between the highly aggressive TA males occurred, resulting in the formation of dominant-subordinate relationships. A great number of attacks inflicted were found to be associated with dominance in the colony, and correlated with a high level of aggressiveness when the animals were individually tested for aggression after having been in colony environments. The level of aggressiveness of the TA males that had become subordinates had significantly decreased. The TNA males fought less and were more often found to stay in their original territory for the entire period of observation. The results suggest that different genotypes for aggression arc related to differences in territoriality and social organization in mice.  相似文献   

17.
The predatory aggression of minks and silver-black foxes were estimated by their attacks on the rats placed in their cage. Intraperitoneal injection of 5-hydroxytryptophan (serotonin precursor) in a dose of 100 mg/kg to foxes and 50 mg/kg to minks, caused a significant blocking of predatory aggression. Estimation of serotonin level in the brain following administration of corresponding doses of 5-HTP inhibiting the predatory aggression, revealed a considerable increase of serotonin content. It may be assumed that serotonin inhibitory mechanisms of predatory aggression are homologous in different species of animals.  相似文献   

18.
A commercial chow and a semipurified diet fed for 14 days to Sprague-Dawley male rats kept under standardized conditions of temperature, humidity, and light had different effects on a series of parameters related to the metabolism of central serotonin and noradrenaline. Rats fed the commercial chow had (1) a lower serum level of the six neutral amino acids (valine, isoleucine leucine, tyrosine, phenylalanine, and methionine) known to compete with tryptophan for its entry into the brain, (2) a higher ratio of tryptophan to the sum of the six neutral amino acids, (3) a lower ratio of tyrosine to the other five neutral amino acids, (4) a lower ratio of serotonin to 5-hydroxyindoleacetic acid in hypothalamus, (5) a higher tryptophan hydroxylase activity in raphe nuclei, and (6) a higher content of noradrenaline in hypothalamus. It is suggested that chow fed rats had a more active central serotonin metabolism in hypothalamus than rats fed the semipurified diet.  相似文献   

19.
Significant genotypic differences in shock-induced aggression were found in mice of eight inbred strains. Aggression was evaluated in test with the action of low electric current through the cage floor. Low aggressive strains C3H/He, DD, BALB/c, AKR and highly aggressive strains CBA, DBA/2. CC57Br were singled out by the number of aggressive attacks. Selective stimulation of dopamine D2 receptors by bromocriptine considerably increased the shock-induced aggressiveness in mice of low-aggressive strains. Blockade of D2-receptors by the injection of antagonist sulpiride decreased or prevented the manifestation of aggression in highly-aggressive mice. At the same time selective agonist of dopamine (D1) receptors SKF 38393 and administration of selective antagonist of D1-receptors SCH 23390 did not influence significantly shock-induced aggression. Thus, shock-induced aggression, depends on the animal genotype and activation of D2-receptors.  相似文献   

20.
Studies have been made of the interrelationship between brain monoaminergic system and pituitary-adrenal function in two groups of the grey rat Rattus norvegicus Berk. One group consisted of non-aggressive rats selected for lack of agonism towards experimentator, the other one included aggressive animals. Domesticated animals exhibited the decreased reaction of the pituitary-adrenocortical complex to emotional stress as well as the decreased response of the endocrine system during stimulation of noradrenaline or serotonin mechanisms of the brain. In addition, noradrenaline and serotonin content of the brain decreased in domesticated rats during emotional stress to a lower extent, as compared to that in aggressive ones. Therefore, one of the sources of correlational changes in the activity of the pituitary-adrenocortical complex during selection for domesticated behaviour is the effect of selection on neurochemical, in particular monoaminergic systems of the brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号