首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most studies regarding ant–aphid interactions focus only on the direct effects of ants on tended aphids and aphidophagous predators, or the indirect effects on the host plant. Studies evaluating the effects of aphid‐tending ants on more than one trophic level are rare and evaluate only the presence or absence of such effects. Here we assessed the effect sizes of ants in a tri‐trophic system (common bean plants, aphids and lacewing larvae). We tested if the presence of aphid‐tending ants has positive effects on aphid abundance and host‐plant production and negative effects on aphid predator abundance. We also hypothesized that aphid‐tending ants affect more intensely trophic levels that are more directly related to them (i.e., first aphids, then aphid predators and then host plants). We tested these hypotheses in field mesocosms experiments using the presence and absence of ants. We found that aphid‐tending ants have great positive effects on final aphid abundance. Ants also positively affected the number of seeds; however, it was not possible to measure the effect size for this trophic level. Furthermore, ants had negative effects on lacewing larvae only at first release. The effect size of ants was greater for aphids, followed by lacewing larvae, and with no effects on the number of seeds produced. Ants positively affect aphids and host‐plant production, probably by way of honeydew collection preventing the development of entomophagous/saprophytic fungi. On the other hand, ants negatively affect lacewing larvae by excluding them from the host plant. In natural systems, several ant species may attend aphids, differently affecting the organisms of the various trophic levels within the ant–aphid interaction, thereby obscuring the real effect size of ants. Assessing the effect size of aphid‐tending ants on the organisms involved in ant–aphid interactions provides more realistic information about the effects of this interaction on natural systems.  相似文献   

2.
Among plants and herbivores, two types of conflicts occur in relation to mutualism with ants: one is competition for ant mutualism among myrmecophilous herbivores and plants, and the other is the conflict whether to attract or repel ants between myrmecophiles and nonmyrmecophiles that are damaged by ants. We investigated the extent to which two species of aphids (Megoura crassicauda and Aphis craccivora) and extrafloral nectaries on their host plant (Vicia faba var. minor) interact with one another for their relationships with ants. We designed an experiment where ants can choose to visit seedlings colonized by (1) M. crassicauda, (2) A. cracivora, (3) both aphid species, or (4) neither aphid species. Ants preferred A. craccivora to extrafloral nectaries and avoided tending M. crassicauda. We also analyzed the population growth of each aphid when it coexists with (1) ants, (2) the other aphid species, (3) ants and the other aphid species, or (4) neither of them. Under ant-free conditions, we detected an exploitative competition between the two aphid species. The ants had no significant effect on the population of A. craccivora, whereas they had negative effects on the population growth of M. crassicauda by attacking some individuals. When both aphids coexisted, M. crassicauda suffered ant attack more intensely because A. craccivora attracted more ants than extrafloral nectaries despite ant-repelling by M. crassicauda. On the other hand, the ants benefited A. craccivora by eliminating its competitor. To avoid ant attack, aphids may have been selected either to be more attractive to ants than other sympatric sugar sources or to repel the ants attracted to them. We hypothesize that competition among sympatric sugar sources including rival aphids and extrafloral nectaries is a factor restricting aphids to be myrmecophilous. Received: January 17, 2000 / Accepted: July 4, 2000  相似文献   

3.
For the mutualistic interaction between the aphid Metopeurum fuscoviride Stroyan (Homoptera: Aphididae) and the ant Lasius niger L. (Hymenoptera: Formicidae) it has been shown that ant-tended aphids develop faster, reproduce at a higher rate, and live longer than aphids not tended by ants. We used electrical penetration graphs (EPG) to investigate if behavioural patterns differ between ant-tended and untended M. fuscoviride during 8 h experiments. Measurements were made on adult aphids from four different ant-tended colonies that continued to be tended by L. niger during the experiments, and from four different colonies where ant workers were excluded several days before the start of the experiment and that were also not tended by ants during the experiments. Ants readily tended wired aphids and ant tending did not interfere with the EPG measurements. There were no significant differences in the duration of sieve element penetration or in any other analysed feeding-related EPG parameters between ant-tended and untended individuals. However, the quality of the EPG recordings did not allow the distinction between the EPG-waveform E1 (salivation only) and E2 (salivation and ingestion). These results suggest that the changes in life-history traits of ant-tended aphids do not result from changes in time of sieve element penetration waveforms. Alternative mechanisms may involve an increase in the rate of sap uptake or a higher effectiveness in nutrient uptake in the presence of ants. Our study demonstrates that the EPG technique is a useful tool to investigate the feeding behaviour of aphids during interactions with ants.  相似文献   

4.
Interactions between ants and aphidophagous and coccidophagous ladybirds   总被引:2,自引:0,他引:2  
Aphidophagous and coccidophagous coccinellids come into conflict with homopteran-tending ants for access to food. Antagonistic interactions between coccinellids and ants may be competitive or non-competitive. Competitive interactions occur when coccinellids attack aphids or coccids that are being tended by ants for honeydew. Non-competitive interactions include all interactions away from ant-tended homopteran colonies. We here review observations and studies of such interactions. We note that most competitive interactions occur at times when untended aphids/coccids are scarce. We describe the chemical and physical defences that coccinellids use against ant aggression and consider whether these have evolved as general anti-predator deterrents or specifically in response to ants. Myrmecophilous coccinellids are then considered, with particular focus on the two most studied species, Coccinella magnifica and Platynaspis luteorubra. We note that the myrmecophily of the two species has the same adaptive rationale—to enable the ladybirds to prey on ant-tended aphids at times of aphid scarcity—but that it is based on different traits to facilitate life with ants. Finally, we consider the role of ants in the evolution of habitat specialisation in some coccinellids.  相似文献   

5.
Zhang S  Zhang Y  Ma K 《PloS one》2012,7(4):e35468
Ant-aphid mutualism is known to play a key role in the structure of the arthropod community in the tree canopy, but its possible ecological effects for the forest floor are unknown. We hypothesized that aphids in the canopy can increase the abundance of ants on the forest floor, thus intensifying the impacts of ants on other arthropods on the forest floor. We tested this hypothesis in a deciduous temperate forest in Beijing, China. We excluded the aphid-tending ants Lasius fuliginosus from the canopy using plots of varying sizes, and monitored the change in the abundance of ants and other arthropods on the forest floor in the treated and control plots. We also surveyed the abundance of ants and other arthropods on the forest floor to explore the relationships between ants and other arthropods in the field. Through a three-year experimental study, we found that the exclusion of ants from the canopy significantly decreased the abundance of ants on the forest floor, but increased the abundance of beetles, although the effect was only significant in the large ant-exclusion plot (80*60 m). The field survey showed that the abundance of both beetles and spiders was negatively related to the abundance of ants. These results suggest that aphids located in the tree canopy have indirect negative effects on beetles by enhancing the ant abundance on the forest floor. Considering that most of the beetles in our study are important predators, the ant-aphid mutualism can have further trophic cascading effects on the forest floor food web.  相似文献   

6.
ABSTRACT: BACKGROUND: Mutualistic interactions are wide-spread but the mechanisms underlying their evolutionary stability and ecological dynamics remain poorly understood. Cultivation mutualisms in which hosts consume symbionts occur in phylogenetically diverse groups, but often have symbiont monocultures for each host. This is consistent with the prediction that symbionts should avoid coexistence with other strains so that host services continue to benefit relatives, but it is less clear whether hosts should always favor monocultures and what mechanisms they might have to manipulate symbiont diversity. Few mutualisms have been studied in sufficient genetic detail to address these issues, so we decided to characterize symbiont diversity in the complex mutualism between multiple root aphid species and Lasius flavus ants. After showing elsewhere that three of these aphid species have low dispersal and mostly if not exclusively asexual reproduction, we here investigate aphid diversity within and between ant nest mounds. RESULTS: The three focal species (Geoica utricularia, Forda marginata and Tetraneura ulmi) had considerable clonal diversity at the population level. Yet more than half of the ant mounds contained just a single aphid species, a significantly higher percentage than expected from a random distribution. Over 60% of these single-species mounds had a single aphid clone, and clones tended to persist across subsequent years. Whenever multiple species/clones cooccurred in the same mound, they were spatially separated with more than 95% of the aphid chambers containing individuals of a single clone. CONCLUSIONS: L. flavus "husbandry" is characterized by low aphid "livestock" diversity per colony, especially at the nest-chamber level, but it lacks the exclusive monocultures known from other cultivation mutualisms. The ants appear to eat most of the early instar aphids, so that adult aphids are unlikely to face limited phloem resources and scramble competition with other aphids. We suggest that such culling of carbohydrate-providing symbionts for protein ingestion may maintain maximal host yield per aphid while also benefitting the domesticated aphids as long as their clone-mates reproduce successfully. The cost-benefit logic of this type of polyculture husbandry has striking analogies with human farming practices based on slaughtering young animals for meat to maximize milk-production by a carefully regulated adult livestock population.  相似文献   

7.
The aphid–ant mutualistic relationships are not necessarily obligate for neither partners but evidence is that such interactions provide them strong advantages in terms of global fitness. While it is largely assumed that ants actively search for their mutualistic partners namely using volatile cues; whether winged aphids (i.e., aphids’ most mobile form) are able to select ant‐frequented areas had not been investigated so far. Ant‐frequented sites would indeed offer several advantages for these aphids including a lower predation pressure through ant presence and enhanced chances of establishing mutuaslistic interactions with neighbor ant colonies. In the field, aphid colonies are often observed in higher densities around ant nests, which is probably linked to a better survival ensured by ants’ services. Nevertheless, this could also result from a preferential establishment of winged aphids in ant‐frequented areas. We tested this last hypothesis through different ethological assays and show that the facultative myrmecophilous black bean aphid, Aphis fabae L., does not orientate its search for a host plant preferentially toward ant‐frequented plants. However, our results suggest that ants reduce the number of winged aphids leaving the newly colonized plant. Thus, ants involved in facultative myrmecophilous interactions with aphids appear to contribute to structure aphid populations in the field by ensuring a better establishment and survival of newly established colonies rather than by inducing a deliberate plant selection by aphid partners based on the proximity of ant colonies.  相似文献   

8.
Yao I 《Biology letters》2012,8(4):624-627
In otherwise mutualistic relationships between aphids and ants, attendance by ants often has negative impacts on aphids. For example, in a previous study using traps in the field, the aphid Tuberculatus quercicola, which exhibits mutualistic interactions with ants, showed extremely low dispersal rates, despite having long wings. This study investigates whether components of the flight apparatus (mesonotum length, flight muscle and wings) differ between aphids attended by ants and not attended by ants. Randomized block analysis of variance, using body length as a covariate, showed that ant attendance has a negative influence on aphid flight apparatus. This result indicates that aphids produce honeydew at the expense of resource investment in flight apparatus. Since the dispersal of T. quercicola is limited under ant attendance, the reduction in flight apparatus could precede a decrease in body size. This study also showed that flight apparatus was more developed in aphids under ant-exclusion conditions. This may imply that T. quercicola fly when ants are not available. The maintenance of flight apparatus in T. quercicola might therefore be partly explained by gene flow on the rare occasions that this aphid species disperses.  相似文献   

9.
Fungal infections are highly dangerous for social insects including ants. Close trophobiotic interaction between ants and aphids promotes infection transmission, as aphids can be a disease vector. The ability of ants to detect fungus-infected aphids and get rid of them is important to the prosperity of both symbiotic partners. However, the diversity of quarantining behaviour among ants is still poorly studied. Here, the behaviour of honeydew foragers of two ant species – Myrmica rubra L. and Myrmica scabrinodis Nylander (Hymenoptera: Formicidae, Myrmicinae, Myrmicini) – was studied in laboratory towards Schizaphis graminum (Rondani) (Hemiptera: Aphididae, Aphidini) aphids contaminated with the generalist fungal pathogen Beauveria bassiana (Balsamo-Crivelli) Vuillemin (Hypocreales). This fungus attacks a wide range of hosts including aphids and ants. The removal of conidia-contaminated aphids from the host plant was found not to be typical of the ants studied. Aphid milkers of M. rubra and M. scabrinodis usually displayed non-aggressive behaviour (tolerance, antennation, honeydew collection, grooming) towards the experimental aphids regardless of whether they were covered with conidia or not. Neither ant species, nor the number of milkers had significant effects on their behaviour towards ‘infected’ aphids. However, some individuals were found to demonstrate quarantining behaviour in full. They quickly detected and removed contaminated aphids, placing them at some distance from the plant. Moreover, in addition to the simple carrying of ‘infected’ aphids down, the more effective technique of dropping them from the plant was noted as well. Ants of the genus Myrmica appear to have a tendency to perform a certain sequence of actions to remove conidia-contaminated aphids from the plant. It is likely that in larger colonies or under conditions of increased risk of infection with entomopathogenic fungi, some Myrmica ants are able to deploy and actively use the behavioural pattern of quarantining behaviour to increase their viability.  相似文献   

10.
Sap-feeding homopterans, which reduce the fitness of their host plants, are often tended by ants that feed on their honeydew. The composition of the honeydew varies with both the aphid and the host plant. Extra-floral nectaries (EFNs) are believed to have evolved to attract attending ants, protecting the hosts, but it is unknown if EFNs on different plants have the same impact on the relations between an aphid species feeding on those plants and its tending ant. Experimental research was conducted to examine the attraction of Tapinoma erraticum scout ants to honeydew from the aphid Aphis gossypii feeding on two different plants, Prunus amygdalus and Mentha piperita, negligence of tending the aphids, and survival of the aphids in the presence of artificial EFNs. The scout ants were significantly more attracted to artificial nectar dispensed on P. amygdalus leaves than on M. piperita, or aphids on both plants and water. They neglected aphids in the presence of artificial EFNs on M. piperita but not on P. amygdalus. The aphid population on M. piperita did not statistically change in the presence of artificial EFNs during the 8 days of the third experiment. On P. amygdalus, the aphids succeeded in developing fully to winged form. In conclusion, the responses of the ants tending aphids to the presence of artificial EFNs were influenced by the host plant.  相似文献   

11.
When aphids parasitize plants with extrafloral nectaries (EFNs) and aphid colony size is small, ants frequently use EFNs but hardly tend aphids. However, as the aphid colony size increases, ants stop using EFNs and strengthen their associations with aphids. Although the shift in ant behavior is important for determining the dynamics of the ant–plant–aphid interaction, it is not known why this shift occurs. Here, we test two hypotheses to explain the mechanism responsible for this behavioral shift: (1) Extrafloral nectar secretion changes in response to aphid herbivory, or (2) plants do not change extrafloral nectar secretion, but the total reward to ants from aphids will exceed that from EFNs above a certain aphid colony size. To judge which mechanism is plausible, we investigated secretion patterns of extrafloral nectar produced by plants with and without aphids, compared the amount of sugar supplied by EFNs and aphids, and examined whether extrafloral nectar or honeydew was more attractive to ants. Our results show that there was no inducible extrafloral secretion in response to aphid herbivory, but the sugar concentration in extrafloral nectar was higher than in honeydew, and more ant workers were attracted to an artificial extrafloral nectar solution than to an artificial aphid honeydew solution. These results indicate that extrafloral nectar is a more attractive reward than aphid honeydew per unit volume. However, even an aphid colony containing only two individuals can supply a greater reward to ants than EFNs. This suggests that the ant behavioral shift may be explained by the second hypothesis.  相似文献   

12.
Identifying factors which allow the evolution and persistence of cooperative interactions between species is a fundamental issue in evolutionary ecology. Various hypotheses have been suggested which generally focus on mechanisms that allow cooperative genotypes in different species to maintain interactions over space and time. Here, we emphasise the fact that even within mutualisms (interactions with net positive fitness effects for both partners), there may still be inherent costs, such as the occasional predation by ants upon aphids. Individuals engaged in mutualisms benefit from minimising these costs as long as it is not at the expense of breaking the interspecific interaction, which offers a net positive benefit. The most common and obvious defence traits to minimise interspecific interaction costs are resistance traits, which act to reduce encounter rate between two organisms. Tolerance traits, in contrast, minimise fitness costs to the actor, but without reducing encounter rate. Given that, by definition, it is beneficial to remain in mutualistic interactions, the only viable traits to minimise costs are tolerance-based 'defence' strategies. Thus, we propose that tolerance traits are an important factor promoting stability in mutualisms. Furthermore, because resistance traits tend to propagate coevolutionary arms races between antagonists, whilst tolerance traits do not, we also suggest that tolerance-based defence strategies may be important in facilitating the transition from antagonistic interactions into mutualisms. For example, the mutualism between ants and aphids has been suggested to have evolved from parasitism. We describe how phenotypic plasticity in honeydew production may be a tolerance trait that has prevented escalation into an antagonistic arms race and instead led to mutualistic coevolution.  相似文献   

13.
Abstract.  1. Although interactions between ants and honeydew-producing insects have received considerable study, relatively little is known about how these interactions alter the behaviour of ants in ways that affect other arthropods. In this study, field and greenhouse experiments were performed that examined how the presence of aphids ( Aphis fabae solanella ) on Solanum nigrum influenced the foraging behaviour of Argentine ants ( Linepithema humile ) and, in turn, modified the extent to which ants deter larval lacewings ( Chrysoperla rufilabris ), which are known aphid predators.
2. A field experiment demonstrated that the level of foliar foraging by ants increased linearly with aphid abundance, whereas no relationship existed between the level of ground foraging by ants and aphid abundance.
3. In the greenhouse, as in the field, foliar foraging by ants greatly increased when aphids were present. Higher levels of foliar foraging led to a twofold increase in the likelihood that ants contacted aphid predators. As a result of these increased encounters with ants, lacewing larvae were twice as likely to be removed from plants with aphids compared with plants without aphids. Once contact was made, however, the behaviour of ants towards lacewing larvae appeared similar between the two experimental groups.
4. Argentine ants drive away or prey upon a diversity of arthropod predators and parasitoids, but they also exhibit aggression towards certain herbivores. Future work should attempt to quantify how the ecological effects that result from interactions between honeydew-producing insects and invasive ants, such as L. humile , differ from those that result from interactions between honeydew-producing insects and native ants.  相似文献   

14.
The defensive effects of ants against aphid predators have been well documented in the mutualistic relationship of aphids and their attending ants. However, it is not clear whether ant attendance has any direct effect on the aphids' growth and reproduction. Through field experiments, this study evaluates the benefits and, in particular, the costs of ant attendance to aphid colonies, focusing on the drepanosiphid aphid Tuberculatus quercicola which is associated with the Daimyo oak, Quercus dentata , and which is always attended by the red wood ant Formica yessensis . Ant attendance was clearly beneficial to the aphid; the exclusion of ants led to a significant increase in the extinction rate of aphid colonies. However, MANOVA and randomized block ANOVA indicated that in colonies continuously attended by ants, aphids had significantly smaller body size and produced a smaller number of embryos than in colonies isolated from ants when they were reared under homogeneous host conditions free from natural enemies. Thus, ant attendance had a negative influence on the growth and reproduction of the aphids, even though it contributed to the greater longevity of the aphid colonies. We hypothesize that ant-attended aphids are under intense selective pressures that act against aphid clones which fail to attract many ants, so that aphids have developed an adaptive mechanism to allocate a larger fraction of resources to the honeydew when they are requested to do so by the ants in order to ensure the ants' consistent visitation.  相似文献   

15.
Abstract. 1. Subterranean aphids in old pasture were found to show extremely clumped distributions with about 3000 aphids (omitting first instars) per ant nest throughout the year.
2. They were generally distributed in and away from the nest mounds, but within the ant's foraging territories.
3. At summer temperatures, more than 3000 first instars are lost from the aphid population per ant nest per day and it is concluded that these are eaten by the ants in addition to some older aphids and the honeydew produced.
4. The aphids may therefore provide enough food to maintain the ants with very little extra needed in the form of other prey.  相似文献   

16.
In a cottonwood (Populus) hybrid zone, Chaitophorus aphids attract aphid-tending ants which subsequently reduce herbivory by the leaf-feeding beetle, Chrysomela confluens. Observations and experimental manipulations of aphids and beetle larvae on immature cottonwood trees demonstrated that: 1) via their recruitment of ants, aphids reduced numbers of beetle eggs and larvae on the host; 2) these interactions occurred within a few days of the host being colonized by aphids; and 3) although aphid colonies were ephemeral, their presence resulted in a 2-fold reduction in beetle herbivory. The aphid-ant interaction is most important in the hybrid zone where 93% of the beetle population is concentrated (for reasons unrelated to aphids and ants). Because beetle defoliation of immature trees is high (ca. 25%), the indirect effect of aphids in reducing herbivory is likely more beneficial to trees in the hybrid zone than in adjacent pure zones where beetle herbivory is virtually absent. Tree genotype likely affects the impact of the aphid-ant interaction on trees within the hybrid zone, since levels of herbivory differ between sympatric Fremont and hybrid cottonwoods.  相似文献   

17.
In the United States, the soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), are often tended by the aphid-tending ant, Lasius neoniger Emery (Hymenoptera: Formicidae). In this study, we examined the effects of tending by ants on the density and biomass of soybean aphids on soybeans in Kentucky. We performed cage studies that limited access by ants and/or natural enemies. We used a split-plot design with natural enemy access as the main plot and ant attendance as the sub plot. We found that natural enemy access negatively affected aphid population density in the presence of tending ants, seen as a three- to four-fold increase in aphid density when natural enemies were excluded. In addition, we found that ant tending positively affected aphid biomass, both when natural enemies were given access to aphids or when natural enemies were excluded, seen by a two-fold increase in aphid biomass when ants tended aphids, both in the presence or absence of natural enemies. Biomass accumulation is seen as an important measurement for assessing aphid performance, and we argue that aphid-tending by ants can have an influence on natural field populations of soybean aphids. Agronomic practices that affect ant abundance in soybeans may influence the performance and hence pest outbreaks for this economically important pest.  相似文献   

18.
As invasive species are key threats to ecosystem structure and function, it is essential to understand the factors underlying their success. Enigmatically, mutualistic organisms are often successful in colonizing novel environments even though they commonly persist only through intricate relationships with other species. Mutualistic ants, for example, protect aphids from natural enemies while collecting carbohydrate–rich honeydew. To facilitate this interaction, ants have evolved aggressive responses to aphid alarm pheromone emissions. As invasive and native mutualists have not evolved together, however, it is unclear if this form of cross-species communication exists between these two parties thereby facilitating these novel interactions. We address this hypothesis by assessing whether the invasive Argentine ant, Linepithema humile, responds to native poplar aphid, Chaitophorus populicola, alarm signals. Here, we show that interspecific signalling does exist in this newly established mutualistic interaction. Argentine ant workers exhibit increased aggression and double the number of visits to an aphid colony after an aphid alarm signal is emitted. We suggest that pre-adaptations may facilitate the emergence of mutualistic associations between many invasive and native species.  相似文献   

19.
The banana aphid, Pentalonia nigronervosa Coquerel (Hemiptera: Aphididae), is the most economically important pest of banana (Musa spp.) fields in Hawaii. Recently, there has been a concerted effort in Hawaii to learn more about the biology and ecology of this pest. However, limited work has been directed at determining the distribution of P. nigronervosa in banana fields and developing an integrated pest management plan. Therefore, a survey was conducted in banana fields throughout the Hawaiian Islands to determine the distribution and density of P. nigronervosa within banana mats from plants of different stages. Another aim was to determine whether the presence of ants on banana plants could be used as a reliable indicator of aphid infestations. Results of the survey showed that plants < or = 1.5 m (small sucker) in height contain the highest aphid populations per meter in plant height and that mother plants (> or = 2.5 m) had the lowest aphid counts and rate of infestation compared with small and intermediate suckers (> 1.5 < 2.5 m). More specifically, aphid population was reduced by approximately 12 aphids for every meter increase in plant height and that aphids are rarely found > or = 2.5 m within the plant canopy. Although there was an increase likelihood of finding ants on banana plants with higher aphid densities, results suggest that ants would be present on plants in the absence of aphids. Implications of these and other findings with respect to sampling and managing P. nigronervosa and associated Banana bunchy top virus are discussed.  相似文献   

20.
1. Uptake of environmental contaminants by lower trophic groups can have negative effects on higher trophic groups. This study tested the ability of selenium, an environmental contaminant found in high concentrations throughout the tissues of certain accumulating plants, to be transferred to ants via aphid tissue and honeydew. 2. Plants of the selenium accumulator, Raphanus sativus (wild radish), were watered with three different selenium treatments (0, 0.25 or 0.5 µg Se ml?1). Aphids, Myzus persicae, and Argentine ant colonies, Linepithema humile, were added to each caged plant and allowed to interact freely. Ant colonies were supplemented with one of three different food options to encourage the consumption of aphids, aphid honeydew, or aphids and honeydew. 3. The accumulation of selenium by each trophic group and a trophic transfer factor (TTF) was calculated. The TTF for plants to aphids was > 1, indicating biomagnification, whereas the TTF for aphids to worker ants was < 1, indicating only biotransfer. Accumulated levels by worker ants did not statistically differ as a result of diet. 4. The amounts of selenium acquired by ants as a factor of diet and caste were compared. Plants, aphids and worker ants accumulated selenium in a dose‐dependent manner. Ant queens did not contain detectable amounts of selenium. Honeydew contained comparable amounts of selenium to plant selenium levels. 5. Access to toxic compounds via honeydew and insect protein may have negative effects on the range expansion of invasive species, such as the Argentine ant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号