首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Sucrose synthase (UDPglucose: d-fructose 2-α-d-glucosyl transferase, EC 2.4.1.13) has been purified from the plant cytosolic fraction of soybean (Glycine max L. Merr cv Williams) nodules. The native enzyme had a molecular weight of 400,000. The subunit molecular weight was 90,000 and a tetrameric structure is proposed for soybean nodule sucrose synthase. Optimum activity in the sucrose cleavage and synthesis directions was at pH 6 and pH 9.5 respectively, and the enzyme displayed typical Michaelis-Menten kinetics. Soybean nodule sucrose synthase had a high affinity for UDP (Km, 5 micromolar) and a relatively low affinity for ADP (apparent Km, 0.13 millimolar) and CDP (apparent Km, 1.1 millimolar). The Km for sucrose was 31 millimolar. In the synthesis direction, UDPglucose (Km, 0.012 millimolar) was a more effective glucosyl donor than ADPglucose (Km, 1.6 millimolar) and the Km for fructose was 3.7 millimolar. Divalent cations stimulated activity in both the cleavage and synthesis directions and the enzyme was very sensitive to inhibition by heavy metals.  相似文献   

3.
4.
5.
Morell M  Copeland L 《Plant physiology》1984,74(4):1030-1034
The specific activities of acid and alkaline invertases (β-d-fructofuranoside fructohydrolase, EC 3.2.1.26), sucrose synthase (UDPglucose: d-fructose 2-α-d-glucosyltransferase, EC 2.4.1.13), hexokinase (ATP: d-hexose 6-phosphotransferase, EC 2.7.1.1), and fructokinase (ATP: d-fructose 6-phosphotransferase, EC 2.7.1.4) were determined in soybean (Glycine max L. Merr cv Williams) nodules at different stages of development and, for comparison, in roots of nonnodulated soybeans. Alkaline invertase and sucrose synthase were both involved in sucrose metabolism in the nodules, but there was only a small amount of acid invertase present. The nodules contained more phosphorylating activity with fructose than glucose. Essentially all of the alkaline invertase, sucrose synthase, and fructokinase were in the soluble fraction of nodule extracts whereas hexokinase was in the bacteroid, plant particulate, and soluble fractions.  相似文献   

6.
Effects of drought on nitrogen fixation in soybean root nodules   总被引:3,自引:0,他引:3  
Soybean plants [Glycine max (L.) Merr.] were grown in silica sand and were drought stressed for a 4 week period during reproductive development and without any mineral N supply in order to maximize demand for fixed nitrogen. A strain of Bradyrhizobium japonicum that forms large quantities of polysaccharide in nodules was used to determine whether or not the supply of reduced carbon to bacteroids limits nitrogenase activity. A depression of 30–40% in nitrogen content in leaves and pods of stressed plants indicated a marked decline in nitrogen fixation activity during the drought period. A 50% increase in the accumulation of bacterial polysaccharide in nodules accompanied this major decrease in nitrogen fixation activity and this result indicates that the negative impact of drought on nodules was not due to a depression of carbon supply to bacteroids. The drought treatment resulted in a statistically significant increase in N concentration in leaves and pods. Because N concentration and chlorophyll concentration in leaves were not depressed, there was no evidence of nitrogen deficiency in drought‐stressed plants, and this result indicates that the negative impact of drought on nodule function was not the cause of the depression of shoot growth. At the end of the drought period, the concentration of carbohydrates, amino nitrogen, and ureides was significantly increased in nodules on drought‐stressed plants. The overall results support the view that, under drought conditions, nitrogen fixation activity in nodules was depressed because demand for fixed N to support growth was lower.  相似文献   

7.
8.
The role of dark carbon dioxide fixation in root nodules of soybean   总被引:3,自引:4,他引:3       下载免费PDF全文
The magnitude and role of dark CO2 fixation were examined in nodules of intact soybean plants (Harosoy 63 × Rhizobium japonicum strain USDA 16). The estimated rate of nodule dark CO2 fixation, based on a 2 minute pulse-feed with 14CO2 under saturating conditions, was 102 micromoles per gram dry weight per hour. This was equivalent to 14% of net nodule respiration. Only 18% of this CO2 fixation was estimated to be required for organic and amino acid synthesis for growth and export processes. The major portion (75-92%) of fixed label was released as CO2 within 60 minutes. The labeling pattern during pulse-chase experiments was consistent with CO2 fixation by phosphoenolpyruvate carboxylase. During the chase, the greatest loss of label occurred in organic acids. Exposure of nodulated roots to Ar:O2 (80:20) did not affect dark CO2 fixation, while exposure to O2:CO2 (95:5) resulted in 54% inhibition. From these results, it was concluded that at least 66% of dark CO2 fixation in soybean may be involved with the production of organic acids, which when oxidized would be capable of providing at least 48% of the requirement for ATP equivalents to support nitrogenase activity.  相似文献   

9.
Exogenous applications of gibberellins (GAs) increased the extractable activity of leaf sucrose phosphate synthase (SPS) in soybean (Glycine max [L.]) and spinach (Spinacia oleracea [L.]). The response to GA applications was detectable within 2 h postapplication and was still observed 6 h, 24 h, and 7 d after treatment. When paclobutrazol, a GA biosynthesis inhibitor, was applied to intact soybean and spinach plants, decreased extractable SPS activity resulted within 24 h following the treatment. Different methods of GA application (spray, injection, capillary wick, and excised leaf systems) produced similar effects on SPS activity of soybean leaves. Protein synthesis in soybean leaves appeared to be necessary for GA-promoted SPS activity because gibberellic acid only partially reversed the inhibitory effect of pretreatment with cycloheximide. Levels of SPS protein from crude extracts of spinach plants were measured by a dot blot technique using monoclonal antibodies against SPS. Application of gibberellic acid to spinach leaves increased levels of SPS protein 2 h, 24 h, and 7 d after treatment. The results suggest that, in both soybean and spinach, GA is one of the endogenous hormonal factors that regulate the steady-state level of SPS protein and, hence, its activity.  相似文献   

10.
11.
Maize scutellum slices incubated in water utilized sucrose at a maximum rate of 0.12,μmol/min per g fr. wt of slices. When slices were incubated in DNP, there was a three-fold increase in the rate of sucrose utilization. Sucrose breakdown in higher plants can be achieved by pathways starting with either invertase or sucrose synthase (SS). Invertase activity in scutellum homogenates was found only in the cell wall fraction, indicating that SS was responsible for sucrose breakdown in vivo. SS in crude scutellum extracts broke down sucrose to fructose and UDPG at 0.39,μmol/min per g fresh wt of slices. The UDPG formed was not converted to UDP + glucose, UMP + glucose-1-P, UDP + glucose-1-P or broken down by any other means by the crude extract in the absence of PPi. In the presence of PPi, UDPG was broken down by UDPG pyrophosphorylase which had a maximum activity of 26 μmol/min per g fr. wt of slices. Levels of PPi in the scutellum could not be measured using the UDPG pyrophosphorylase: phosphoglucomutase: glucose-6-P dehydrogenase assay because they were too low relative to glucose-6-P which interferes in the assay. An active inorganic pyrophosphatase was present in the scutellum extract which could prevent the accumulation of PPi in the cytoplasm. ATP pyrophosphohydrolase, which hydrolyses ATP to AMP and PPi, was found in the soluble portion of the scutellum extract. The enzyme activity was increased by fructose-2,6-bisP and Ca2+. In the presence of both activators, enzyme activity was 1.1 μmol/min per g fr. wt of slices, a rate sufficient to supply PPi for the breakdown of UDPG. These results indicate that sucrose breakdown in maize scutellum cells occurs via the SS: UDPG pyrophosphorylase pathway.  相似文献   

12.
The gene ENOD40 is expressed at an early stage of root nodule organogenesis and has been postulated to play a central regulatory role in the Rhizobium-legume interaction. In vitro translation of soybean ENOD40 mRNA showed that the gene encodes two peptides of 12 and 24aa residues (peptides A and B) that bind to sucrose synthase. Here we show that the small Cys-containing peptide A binds to sucrose synthase by disulfide bond formation, which may represent a novel form of posttranslational modification of this important metabolic enzyme. Assays using nanomolar concentrations of peptide A revealed that the monomeric reduced form of this peptide binds to purified sucrose synthase. Using a cysteinyl capture strategy combined with MALDI-TOF MS analysis we identified the Cys residue C264 of soybean sucrose synthase as the binding site of peptide A. Modification of sucrose synthase with ENOD40 peptide A activates sucrose cleavage activity whereas the synthesis activity of the enzyme is unaffected. The results are discussed in relation to the role of sucrose synthase in the control of sucrose utilization in nitrogen-fixing nodules.  相似文献   

13.
Soybean (Glycine max) nodules formed by inoculation with either an effective strain or an ineffective (noninvasive, nodule-forming) strain of Bradyrhizobium japonicum were assayed for changes in developmental patterns of carbon metabolic enzymes of the plant nodule cells. Of the enzyme activities measured, only sucrose synthase, glutamine synthetase, and alcohol dehydrogenase were altered in the ineffective nodules relative to the effective nodules. Sucrose synthase and glutamine synthetase activities were greatly reduced, whereas alcohol dehydrogenase activity was elevated. Dark-induced senescence severely affected sucrose synthase but had little, if any, effect on the other enzymes measured. The developmental patterns of the anaerobically induced enzymes, aldolase and alcohol dehydrogenase, were different from those expected, implying that their development is not regulated solely by oxygen deprivation. However, anaerobic treatment of nodules resulted in responses similar to those enzymes in maize. The developmental profiles of the carbon metabolic enzymes suggest that carbohydrates are metabolized via the sucrose synthase and pentose phosphate pathways. This route of carbon metabolism, compared to glycolysis, would reduce the requirement of ATP for carbohydrate catabolism, generate NADPH for biosynthetic reactions, and provide intermediates for plant secondary metabolism.  相似文献   

14.
Nitrogen fixation (NF) in soybean (Glycine max L. Merr.) is highly sensitive to soil drying. This sensitivity has been related to an accumulation of nitrogen compounds, either in shoots or in nodules, and a nodular carbon flux shortage under drought. To assess the relative importance of carbon and nitrogen status on NF regulation, the responses to the early stages of drought were monitored with two soybean cultivars with known contrasting tolerance to drought. In the sensitive cultivar ('Biloxi'), NF inhibition occurred earlier and was more dramatic than in the tolerant cultivar ('Jackson'). The carbon flux to bacteroids was also more affected in 'Biloxi' than in 'Jackson', due to an earlier inhibition of sucrose synthase activity and a larger decrease of malate concentration in the former. Drought provoked ureide accumulation in nodules of both cultivars, but this accumulation was higher and occurred earlier in 'Biloxi'. However, at this early stage of drought, there was no accumulation of ureides in the leaves of either cultivar. These results indicate that a combination of both reduced carbon flux and nitrogen accumulation in nodules, but not in shoots, is involved in the inhibition of NF in soybean under early drought.  相似文献   

15.
Nicotianamine is an intermediate for the biosynthesis of mugineic acid-family phytosiderophores (MAs) in the Gramineae and a key substance for iron metabolism in dicots. Nicotianamine synthase catalyzes the formation of nicotianamine from S-adenosylmethionine. Nicotianamine synthase activity was induced in barley roots at the 3rd day after withholding Fe supply and declined within one day followmg the supply of Fe3+-epihydroxymugineic acid. The induction of nicotianamine synthase activity by Fe-deficiency was observed also in sorghum, maize, and rye, and the level of nicotianamine synthase activity was highly associated with the MAs secreted among graminaceous plant tested. Therefore, the nicotianamine synthase gene may be a suitable candidate for making a transgenic plant tolerant to Fe-deficiency.Abbreviations p-APMSF (p-amidinophenyl) methanesulfonylfluoride hydrochloride - NA nicotianamine - DMA 2-deoxymugineic acid - E-64 trans-epoxysuccinyl-leucylamido-(4-guanidino) butane - epiHMA 3-epihydroxymugineic acid - MAs mugineic acid-family phytosiderophores which include deoxymugineic acid, mugineic acid, hydroxymugineic acid, epihydroxymugineic acid and avenic acid - PVP polyvinylpyrrolidone - SAM S-adenosylmethionine  相似文献   

16.
In this study, the possibility of enhancing cold stress tolerance of soybean plants (Glycine max L.) by exogenous application of 5-aminolevulinic acid (ALA) was investigated. ALA was added to the Hoagland solution at various concentrations ranging from 0 to 40 μM for 12 h. After ALA treatment, the plants were subjected to cold stress at 4°C for 48 h. ALA at low concentrations (5-10 μM) provided significant protection against cold stress compared to non-ALA-treated plants, enhancing chlorophyll content (Chl) as well as relative water content (RWC). Increase of thiobarbituric acid reactive species (TBARS) levels was also prevented, whereas exposure to higher ALA concentrations (15-40 μM) brought about a dose dependent increase of these species, reaching a maximum of 117% in plants pre-treated with 40 μM ALA compared to controls. ALA pre-treatment also enhanced catalase (CAT) and heme oxygenase-1 (HO-1) activities. These findings indicate that HO-1 acts not only as the rate limiting enzyme in heme catabolism, but also as an antioxidant enzyme. The highest cold tolerance was obtained with 5 μM ALA pre-treatment. Results show that ALA, which is considered as an endogenous plant growth regulator, could be used effectively to protect soybean plants from the damaging effects of cold stress by enhancing the activity of heme proteins, e.g., catalase (CAT) and by promoting heme catabolism leading to the production of the highly antioxidant biliverdin and carbon monoxide, without any adverse effect on the plant growth.  相似文献   

17.
植物抗旱过程中ABA生理作用的研究进展   总被引:16,自引:0,他引:16  
谭云  叶庆生  李玲 《植物学通报》2001,18(2):197-201
植物在长期进化中,对干旱等胁迫从生理,生化和分子水平上产生了适应性变化,从而增加逆境存活机会,在这些响过程中,ABA起着极其重要的作用,本文介绍了近年来研究ABA的植物抗旱中生理作用方面所取得的进展。  相似文献   

18.
植物在长期进化中,对干旱等胁迫从生理、生化和分子水平上产生了适应性变化,从而增加逆境存活机会,在这些响应过程中,ABA起着极其重要的作用。本文介绍了近年来研究ABA在植物抗旱中生理作用方面所取得的进展。  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号