首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We characterize here a cDNA from the ixodid tick Haemaphysalis longicornis, which encodes an asparaginyl endopeptidase, legumain (HlLgm), that was present as a functional molecule in the midgut of this tick. Endogenous HlLgm was detected as a 38-kDa antigen in H. longicornis extracts and was seen throughout all developmental stages. Endogenous HlLgm was mainly localized in the midgut epithelium by immunohistochemistry, and was shown to be up-regulated by the host blood-feeding process. Recombinant HlLgm (rHlLgm) produced in Escherichia coli was shown to hydrolyze the synthetic substrate Z-Ala-Ala-Asn-MCA at the rate of 6.42x10(-4)mumol/min/mg protein. Its activity was inhibited by the thiol blocking reagents iodoacetamide and N-ethylmaleimide. The enzyme was shown to possess a unique feature of having an autocatalyzed cleavage at asparagines(364-365) at the C-terminus of both endogenous HlLgm and rHlLgm. rHlLgm degraded bovine hemoglobin and bovine serum albumin (BSA) showing its strict specificity for hydrolysis of the peptide on the carboxyl side of the asparagines, as demonstrated by internal amino acid sequence analysis of proteolytic product of BSA cleavage. These results suggest that HlLgm plays an important role in host blood-meal digestion and may be critical for the final process of digestion of blood components.  相似文献   

2.
Legumain (EC 3.4.22.34) is an asparaginyl endopeptidase. Strong legumain activity was observed in the mouse kidney, and legumain was highly expressed in tumors. We previously reported that bovine kidney annexin A2 was co-purified with legumain and that legumain cleaved the N-terminal region of annexin A2 at an Asn residue in vitro. In this study, to determine whether annexin A2 is cleaved by legumain in vivo, siRNA-lipoplex targeting mouse legumain was injected into mouse tail veins. Mouse kidneys were then isolated and the effect of knockdown of legumain expression on annexin A2 cleavage was examined. The results showed that both legumain mRNA and protein expression levels were decreased in the siRNA-treated mouse kidneys and that legumain activity toward a synthetic substrate, Z-Ala-Ala-Asn-MCA, was decreased by about 40% in the kidney but not in the liver or spleen. Furthermore, cleavage of annexin A2 at the N-terminal region was decreased in the mouse kidney that had been treated with the legumain siRNA-lipoplex. These results suggest that legumain siRNA was delivered to the kidney by using LipoTrust and that the reduced legumain expression inhibited legumain-induced degradation of annexin A2 in vivo.  相似文献   

3.
4.
A full-length sequence of a thrombin inhibitor (designated as hemalin) from the midgut of parthenogenetic Haemaphysalis longicornis has been identified. Sequence analysis shows that this gene belongs to the Kunitz-type family, containing two Kunitz domains with high homology to boophilin, the thrombin inhibitor from Rhipicephalus (Boophilus) microplus. The recombinant protein expressed in insect cells delayed bovine plasma clotting time and inhibited both thrombin-induced fibrinogen clotting and platelet aggregation. A 20-kDa protein was detected from the midgut lysate with antiserum against recombinant hemalin. The gene is expressed at all stages of the tick except for the egg stage, and hemalin mRNA mainly in the midgut of the female adult tick. Real-time PCR analysis shows that this gene has a distinctly high expression level in the rapid bloodsucking period of the larvae, nymphs, and adults. Disruption of the hemalin gene by RNA interference led to a 2-day extension of the tick blood feeding period, and 27.7% of the RNA-treated ticks did not successfully complete the blood feeding. These findings indicate that the newly identified thrombin inhibitor from the midgut of H. longicornis might play an important role in tick blood feeding.  相似文献   

5.
6.
Serine proteinases are one of the largest proteolytic families of enzymes, and have diverse cellular activities in mammalian tissues. We report here the cloning and molecular characterization of a cDNA encoding the serine proteinase of the hard tick Haemaphysalis longicornis (HlSP). The HlSP cDNA is 1570 bp long and the deduced precursor protein consists of 464 amino acids with a predicted molecular mass of 50.4 kDa and a pI of 8.2. The preprotein, consisting of 443 amino acids, was predicted to include a complement C1r/C1s, Uegf, and bone morphogenic protein-1 domain, a low-density lipoprotein receptor class A domain, and a catalytic domain. HlSP sequence analysis showed high similarity to serine proteinases reported from arthropods and vertebrate animal species. Two-dimensional immunoblot analysis revealed endogenous HlSP in adult tick extracts at 50 kDa. Endogenous HlSP was also expressed in all lifecycle stages of H. longicornis. Immunohistochemical studies detected the endogenous enzyme in the midgut epithelial cells of an adult tick. The Escherichia coli-expressed recombinant HlSP was demonstrated to degrade bovine serum albumin and hydrolyze the substrate Bz-L-Arg-pNA at the rate of 30.2 micromol/min/mg protein. Further, HlSP expression was up-regulated during a blood-feeding process, indicating its involvement in the digestion of host blood components.  相似文献   

7.

Inhibitors of apoptosis (IAPs) are regulators of cell death and may play a role in the salivary glands of ticks during blood-feeding. We cloned the open reading frame (ORF) sequence of the IAP gene in Rhipicephalus haemaphysaloides (RhIAP). The RhIAP ORF of 1887 bp encodes a predicted protein of 607 amino acids, which contains three baculovirus IAP repeat domains and a RING finger motif. A real-time PCR assay showed that RhIAP mRNA was expressed in all the tick developmental stages (eggs, larvae, nymphs, and adults) and in all tissues examined (midgut, ovary, salivary glands, fat body, and hemolymph). Western blot showed that the protein level of RhIAP in salivary glands increased during tick blood-feeding and decreased towards the end of tick engorgement. RhIAP gene silencing in vitro experiments with salivary glands demonstrated that RhIAP could be effectively knocked down within 48 h after dsRNA treatment, and as a consequence, salivary glands displayed apoptotic morphology. RhIAP gene silencing also inhibited tick blood-feeding and decreased the engorgement rate. These data suggest that RhIAP might be a suitable RNAi target for tick control.

  相似文献   

8.
9.
10.
Three protein disulfide isomerases from Haemaphysalis longicornis ticks (designated as HlPDI-1, HlPDI-2, and HlPDI-3) were previously identified. In order to further analyze their biological functions, the dsRNA of each HlPDI gene and one dsRNA combination of HlPDI-1/HlPDI-3 were separately injected into female ticks. Reduction of gene and protein expression of HlPDIs by RNA interference (RNAi) was demonstrated by real-time PCR, RT-PCR and Western blot analysis. In single dsRNA-injected groups, HlPDI-1 RNAi impacted tick blood feeding and oviposition, HlPDI-2 RNAi impacted tick viability and HlPDI-3 RNAi had no significant impact by itself. However, the injection of a combination of HlPDI-1/HlPDI-3 dsRNA had synergistic effects on tick viability. Furthermore, the midgut and cuticle were severely damaged in HlPDI-2 dsRNA-injected ticks and HlPDI-1/HlPDI-3 dsRNA-injected ticks, respectively, and disruption of HlPDI genes led to a significant reduction of disulfide bond-containing vitellogenin (Vg) expression in ticks. These results indicate that PDIs from H. longicornis are involved in blood feeding, viability and oocyte development, probably by mediating the formation of disulfide bond-containing proteins of the ticks and the formation of basement membrane and cuticle components such as extracellular matrix (ECM). This is the first report on the functional analysis of PDI family molecules as well as the interactions of PDI and other molecules in blood-feeding arthropods.  相似文献   

11.
Legumain (asparaginyl endopeptidase) was purified to homogeneity from bovine kidneys. The molecular mass of the purified enzyme was calculated to be 34000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the presence of beta-mercaptoethanol. The enzyme rapidly hydrolyzed the substrate Z-Ala-Ala-Asn-MCA and was strongly inhibited by N-ethylmaleimide, p-chloromercuribenzene-sulfonic acid, Hg(2+) and Cu(2+). The amino acid sequence of the first 26 residues of the enzyme was Gly-Gly-Lys-His-Trp-Val-Val-Ile-Val-Ala-Gly-Ser-Asn-Gly-Gln-Tyr-Asn-Tyr-Arg-His-Gln-Ala-Phe-Ala-Asp-His-. This sequence is highly homologous to the sequences in the N-terminal of pig kidney legumain. We screened a bovine kidney cortex cDNA library using a DNA probe that originated from rat legumain, and we determined the bovine kidney cDNA structure and deduced the amino acid sequence. The cDNA is composed 1934 bp and encodes 433 amino acids in the coding region. The enzyme was strongly stained in the proximal tubules of the rat kidney in an immunohistochemical study. Vitamin D-binding protein which is known to be a ligand to megalin existing in the proximal tubules, was cleaved in a limited proteolytic manner by bovine kidney legumain. These results suggested that legumain contributes to the processing of macromolecules absorbed by proximal tubule cells. The enzyme also cleaved an N-terminal synthetic peptide of bovine annexin II (Gly(24)-Ser-Val-Lys-Ala-Tyr-Thr(30)-Asn-Phe-Asp-Ala-Glu(35)-Arg-Asp(37)) at a position between Asn(31) and Phe(32). The amino-terminal domain of annexin II has p11 subunit binding sites and phosphorylation sites for both pp60(src) and protein kinase C. This suggests that legumain plays an important role in inactivation and degradation of annexin II, which is abundant in the receptor-recycling compartments of endosomes/lysosomes.  相似文献   

12.
Aminopeptidases responsible for blood digestion have yet to be identified in haematophagous ticks. We report here the cloning and molecular characterisation of a cDNA encoding leucine aminopeptidase, a member of the M17 cytosolic aminopeptidase family, from the hard tick Haemaphysalis longicornis (HlLAP). Endogenous HlLAP was detected in the soluble fraction of adult tick extracts by immunoblotting. Immunohistochemical studies demonstrated that endogenous HlLAP expression mainly took place in the cytosol of midgut epithelial cells. Furthermore, expression of HlLAP was induced by a blood-feeding process. A functional recombinant HlLAP expressed in Escherichia coli efficiently hydrolyses synthetic substrates for aminopeptidase, a leucyl (with the Km value 0.19 +/- 0.011 mM and Vmax value 157.2 +/- 3.17 nmol/min/mgprotein) and a methionyl substrate (with the Km value 0.12+/-0.0052 mM and Vmax value 171.9 +/- 2.31 nmol/min/mgprotein). Enzyme activity was found to be optimum at pH 8 and 35 degrees C. The recombinant HlLAP enzyme activity was strongly dependent on metal divalent cations, Mn2+, and was inhibited by bestatin. These results indicate that HlLAP play an important role for host's blood digestion process.  相似文献   

13.
Ticks are ectoparasitic blood-feeders and important vectors for pathogens including arboviruses, rickettsiae, spirochetes and protozoa. As obligate blood-feeders, one possible strategy to retard disease transmission is disruption of the parasite's ability to digest host proteins. However, the constituent peptidases in the parasite gut and their potential interplay in the digestion of the blood meal are poorly understood. We have characterised a novel asparaginyl endopeptidase (legumain) from the hard tick Ixodes ricinus (termed IrAE), which we believe is the first such characterisation of a clan CD family C13 cysteine peptidase (protease) in arthropods. By RT-PCR of different tissues, IrAE mRNA was only expressed in the tick gut. Indirect immunofluorescence and EM localised IrAE in the digestive vesicles of gut cells and within the peritrophic matrix. IrAE was functionally expressed in Pichia pastoris and reacted with a specific peptidyl fluorogenic substrate, and acyloxymethyl ketone and aza-asparagine Michael acceptor inhibitors. IrAE activity was unstable at pH > or = 6.0 and was shown to have a strict specificity for asparagine at P1 using a positional scanning synthetic combinatorial library. The enzyme hydrolyzed protein substrates with a pH optimum of 4.5, consistent with the pH of gut cell digestive vesicles. Thus, IrAE cleaved the major protein of the blood meal, hemoglobin, to a predominant peptide of 4kDa. Also, IrAE trans-processed and activated the zymogen form of Schistosoma mansoni cathepsin B1 -- an enzyme contributing to hemoglobin digestion in the gut of that bloodfluke. The possible functions of IrAE in the gut digestive processes of I. ricinus are compared with those suggested for other hematophagous parasites.  相似文献   

14.
Kato H  Sutoh K  Minamikawa T 《Planta》2003,217(4):676-685
We previously showed that two major cysteine endopeptidases, REP-1 and REP-2, were present in germinated rice ( Oryza sativa L.) seeds, and that REP-1 was the enzyme that digests seed storage proteins. The present study shows that REP-2 is an asparaginyl endopeptidase that acts as an activator of REP-1, and we separated it into two forms, REP-2alpha (39 kDa) and REP-2beta (40 kDa), using ion-exchange chromatography and gel filtration chromatography. Although analysis of the amino terminals revealed that 10 amino acids of both forms were identical, their isoelectric points were different. SDS-PAGE/immunoblot analysis using an antiserum raised against legumain, an asparaginyl endopeptidase from jack bean, indicated that both forms were present in maturing and germinating rice seeds, and that their amounts transiently decreased in dry seeds. Northern blot analysis indicated that REP-2 mRNA was expressed in both maturing and germinating seeds. In germinating seeds, the mRNA was detected in aleurone layers but not in shoot and root tissues. Incubation of the de-embryonated seeds in 10(-6) M gibberellic acid induced the production of large amounts of REP-1, whereas REP-2beta levels declined rapidly. Southern blot analysis showed that there is one gene for REP-2 in the genome, indicating that both REP-2 enzymes are generated from a single gene. The structure of the gene was similar to that of beta-VPE and gamma-VPE isolated from Arabidopsis thaliana.  相似文献   

15.
Ticks are well-known vectors of various pathogens but migration of the pathogens in the tick midgut is not fully understood. In the present study, the fate of microbes in the midgut of Ornithodoros moubata was observed using green fluorescent protein (GFP)-expressing Escherichia coli. Fluctuations in the percentage of hemocytes in the hemolymph (Hc) and expression of an antimicrobial peptide, defensin, in the midgut was also investigated. Most E. coli gradually disappeared in the midgut after ingestion fluctuations in Hc coincided with the changes. Expression of defensin was also confirmed and slightly up-regulated after E. coli ingestion. Moreover, it was demonstrated that E. coli can not pass through the tick midgut epithelium after ingestion by the hemolymph cultures. It is known that various pathogens and host immunoglobulins ingested with a blood meal can enter into the hemocoel, which suggests the presence of unique and complex passage mechanisms for each molecule and organism. The results obtained here help to clarify that digestion enzymes is an important function of the tick midgut to protect against invading molecules and organisms.  相似文献   

16.
We report here the molecular characterization and possible function of a cysteine protease (termed HlCPL-A) identified in the midgut of the hard tick Haemaphysalis longicornis. HlCPL-A is a 333 amino acid protein belonging to the papain family of the cysteine protease. A construct encoding proHlCPL-A was expressed in Escherichia coli and purified as both procathepsin L and active processed cathepsin L forms. The HlCPL-A gene expression was up-regulated by blood-feeding process. HlCPL-A exhibited substrate specificity against synthetic peptidyl substrates (Z-Phe-Arg-MCA and Z-Arg-Arg-MCA; kcat / Km = 0.19 and 0.0023 M− 1 S− 1, respectively). The proteolytic activity of HlCPL-A was inhibited by leupeptin, antipain and E-64 but was unaffected by pepstatin. HlCPL-A was capable of degrading bovine hemoglobin at pH 3.2 to 5.6. These results suggest that HlCPL-A may play important roles in the digestion of host hemoglobin in ticks.  相似文献   

17.
Ticks feed exclusively on blood to obtain their nutrients, but the gene products that mediate digestion processes in ticks remain unknown. We report the molecular characterization and possible function of a serine carboxypeptidase (HlSCP1) identified in the midgut of the hard tick Haemaphysalis longicornis. HlSCP1 consists of 473 amino acids with a peptidase S10 family domain and shows structural similarity with serine carboxypeptidases reported from other arthropods, yeasts, plants and mammals. Endogenous HlSCP1 is strongly expressed in the midgut and is supposed to localize at lysosomal vacuoles and on the surface of epithelial cells. Endogenous HlSCP1, identified as a 53 kDa protein with pI value of 7.5, was detected in the membrane/organelle fraction isolated from the midgut, and its expression was upregulated during the course of blood-feeding. Enzymatic functional assays revealed that a recombinant HlSCP1 (rHlSCP1) expressed in yeast efficiently hydrolyzed the synthetic substrates specific for cathepsin A and thiol protease over a broad range of pH and temperature values. Furthermore, rHlSCP1 was shown to cleave hemoglobin, a major component of the blood-meal. Our results suggest that HlSCP1 may play a vital role in the digestion of the host's blood-meal.  相似文献   

18.
Ticks had to adapt to an existing and complex vertebrate hemostatic system from being free-living scavengers. A large array of anti-hemostatic mechanisms evolved during this process and includes blood coagulation as well as platelet aggregation inhibitors. Several questions regarding tick evolution exist. What was the nature of the ancestral tick? When did ticks evolve blood-feeding capabilities? How did these capabilities evolve? Did host specificity influence the adaptation of ticks to a blood-feeding environment? What are the implications of tick evolution for future research into tick biology and vaccine development? We investigate these questions in the light of recent research into protein superfamilies from tick saliva. Our conclusions are that the main tick families adapted independently to a blood-feeding environment. This is supported by major differences observed in all processes involved with blood-feeding for hard and soft ticks. Gene duplication events played a major role in the evolution of novel protein functions involved in tick-host interactions. This occurred during the late Cretaceous and was stimulated by the radiation of birds and placental mammals, which provided numerous new niches for ticks to adapt to a new lifestyle. Independent adaptation of the main tick families to a blood-feeding environment has several implications for future tick research in terms of tick genome projects and vaccine development.  相似文献   

19.
Inhibitors of proteases play key roles in the biological processes of vertebrate and invertebrate animals, including arthropod parasites. Here, we describe a cDNA that encodes a functionally active chymotrypsin inhibitor of the BPTI/Kunitz family of serine protease inhibitors from the hemocytes of the ixodid tick, Haemaphysalis longicornis, herein called HlChI. HlChI sequence is evolutionarily conserved and contains six cysteine residues and three disulfide bonds with a calculated molecular weight of 9.1 kDa. HlChI-specific mRNA was expressed in all developmental stages of ticks and the expression was up-regulated by host's blood-feeding processes. Endogenous HlChI was localized mainly in the hemocytes. HlChI potently inhibited bovine pancreatic α-chymotrypsin for hydrolyzing the fluorogenic substrate (IC50 8.32 nM, Kd 5.35 ± 1.01 nM) and bovine casein digestion. However, HlChI weakly inhibited bovine pancreatic trypsin and could not affect the porcine elastase activity, suggesting its narrow specificity to chymotrypsin. HlChI was stable over the pH range 2–11 and heating up to 70 °C at pH 8. HlChI was highly stable to 8 M urea and 2% SDS at pH 8.0, when treated for 24 h at 37 °C. However, 0.2 M 2-mercaptoethanol caused complete but reversible inactivation of HlChI. Knockdown of HlChI gene by RNA interference (RNAi) caused death of the feeding ticks, failure of ticks to engorge and significantly reduced body weight gain. RNAi also resulted in significantly decreased egg conversion ratio and fecundity. These results suggest that HlChI is a chymotrypsin-specific inhibitor with high stability and may play regulatory functions in host's blood-feeding processes and tick reproduction.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号