首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Disturbances of the microvascular permeability were studied by the "vascular labelling" technique during the immobilization stress of hypophysectomized and adrenalectomized rats. Animals with sham operations served as controls. As revealed, hypophysectomy and adrenalectomy caused disturbances of vascular permeability in the mesentery. Vascular permeability disturbances in the hypophysectomized and adrenalectomized rats under conditions of immobilization were more expressed than in the sham-operated animals. Removal of the pituitary and adrenal glands produced mast cell degranulation at the earlier immobilization period.  相似文献   

2.
Biomicroscopic experiments have shown that the N-terminal fragment of substance P (SP1-4), when applied to the rat mesentery, has a considerably lower injuring effect than substance P (SP1-11) itself. SP1-4 activity, as compared to SP1-11 activity regarded as 1, was 0.007 in case of microcirculatory disturbances and venular permeability increase and 0.0007 in case of mast cell degranulation increase. The data obtained suggest that the slightest damaging effect of SP1-4 on microcirculation is combined with anti-stress activity.  相似文献   

3.
Disturbances of vascular permeability were studied by the "vascular labeling" technique in the mesentry during the 24-hour immobilization of rats. Administration of dimebolin (an antihistaminic preparation) decreased the number of labeled vessels and labeling intensity. This effect was expressed in the presence of mast cells only and was accompanied by the mast cell degranulation. The authors suppose that the mast cells contain a substance preventing the disturbance of vascular permeability and released during degranulation. Such substance might be heparin. Experiments showed that small doses of heparin failed to produce such effect. These results allowed one to conclude that mast cells played a double role in the mechanisms of disturbance of vascular permeability during immobilization--the damaging (by the action of histamine and serotonine) and the protective (by the released heparin) action.  相似文献   

4.
Twenty-four-hour immobilization or electric stimulation for 6 h were used in rats as stressors. The first stressor caused more profound and protracted disturbances in the microcirculatory system. The recovery of the microcirculation occurred in 50% of animals by day 6 and in 100% by day 14 after immobilization. The terminal blood flow recovery after 6-hour electric stimulation was seen in a day. Vascular permeability after 24-hour immobilization returned to normal in 24 h, and after 6 h of electric stimulation in 6 h. This process correlated with the morphofunctional status of mast cells and was probably phasic in nature.  相似文献   

5.
We developed a microfluidic model of microcirculation containing both blood and lymphatic vessels for examining vascular permeability. The designed microfluidic device harbors upper and lower channels that are partly aligned and are separated by a porous membrane, and on this membrane, blood vascular endothelial cells (BECs) and lymphatic endothelial cells (LECs) were cocultured back-to-back. At cell-cell junctions of both BECs and LECs, claudin-5 and VE-cadherin were detected. The permeability coefficient measured here was lower than the value reported for isolated mammalian venules. Moreover, our results showed that the flow culture established in the device promoted the formation of endothelial cell-cell junctions, and that treatment with histamine, an inflammation-promoting substance, induced changes in the localization of tight and adherens junction-associated proteins and an increase in vascular permeability in the microdevice. These findings indicated that both BECs and LECs appeared to retain their functions in the microfluidic coculture platform. Using this microcirculation device, the vascular damage induced by habu snake venom was successfully assayed, and the assay time was reduced from 24 h to 30 min. This is the first report of a microcirculation model in which BECs and LECs were cocultured. Because the micromodel includes lymphatic vessels in addition to blood vessels, the model can be used to evaluate both vascular permeability and lymphatic return rate.  相似文献   

6.
The effects of desensitization of capsaicin-sensitive afferent neurons on gastric microcirculation were investigated before and after administration of indomethacin at ulcerogenic dose in adrenalectomized rats with or without corticosterone replacement and in sham-operated animals. We estimated the blood flow velocity in submucosal microvessels; the diameters and permeability of mucosal venous microvessels as parameters of gastric microcirculation. Desensitization of capsaicin-sensitive neurons was performed with capsaicin at the dose 100 mg/kg two weeks before the experiment. Adrenalectomy was created one week before experiment. In vivo microscopy technique for the direct visualization of gastric microcirculation and the analysis of the blood flow was employed. Indomethacin at ulcerogenic dose decreased the blood flow velocity in submucosal microvessels, caused dilatation of superficial mucosal microvessels and increased their permeability. Desensitization of capsaicin-sensitive afferent neurons potentiated indomethacin-induced microvascular disturbances in gastric submucosa-mucosa. These potentiated effects of the desensitization are obviously promoted by concomitant glucocorticoid deficiency. Thus, glucocorticoid hormones have a beneficial effect on gastric microcirculation in rats with desensitization of capsaicin-sensitive afferent neurons.  相似文献   

7.
Activation of cutaneous sensory nerves induces vasodilatation and vascular permeability, i.e., neurogenic inflammation. We examined the histology and possible mast cell involvement in cutaneous neurogenic inflammation induced by electrical nerve stimulation (ENS). Three lines of evidence indicated that mast cells were not involved in rodent cutaneous neurogenic inflammation induced by electrical stimulation of the saphenous nerve. 1) Most mast cells (86.5% of all mast cells in the dorsal skin of the paw) were found in the deep dermis, whereas vessels developing increased vascular permeability after nerve stimulation (visualized with the supravital dye Monastral blue B, a macro-molecular tracer) were localized predominantly in the superficial dermis. By contrast, i.v. substance P, which also causes increased cutaneous vascular permeability, predominantly caused deeper vessels to leak. As analyzed by electron microscopy, the vessels that developed permeability in response to nerve stimulation, and were thereby stained with Monastral blue B, were found to be exclusively postcapillary venules. 2) Disodium cromoglycate (DSCG), a mast cell stabilizing compound, inhibited the cutaneous vascular permeability induced by intradermal injections of anti-IgE in a dose-dependent manner. By contrast, vascular permeability induced by ENS was not influenced by disodium cromoglycate treatment. 3) ENS and i.v. substance P both induced cutaneous vascular permeability in mast cell-deficient W/Wv mice, despite the fact that their skin contained only 4.7% of the mast cells present in their normal +/+ litter mates. The magnitude of ENS-induced vascular permeability responses in W/Wv mice were similar to control +/+ and BALB/c mice. This study supports our earlier observations suggesting that mast cell activation is not essential for the initial, vascular permeability phase of neurogenic inflammation in rodent skin.  相似文献   

8.
Photodynamic therapy (PDT) treatment can exhibit high intersubject variability due to the inherent differences in drug delivery within the tissue to be treated. In this study, the increased perfusion of the lipid-associated photosensitizer verteporfin was studied using substance P, a peptide known to increase vascular permeability. The transvascular permeability coefficient was quantified before and after administration of substance P, and the mean value increased from 0.026 to 0.043 microm/s with the induced inflammation. Correspondingly, there was a 40-50% increase in uptake of verteporfin in the tumor parenchyma in tumors injected with substance P compared to those without. This increased drug uptake resulted in a modest increase in tumor doubling time from 4 days with regular PDT to 6.2 days with substance P and PDT. There was also a significant reduction in the interindividual variability in with substance P plus PDT from 64% to 13%. The resulting treatment was therefore more effective and there was less variability in dose between subjects.  相似文献   

9.
Although prior studies suggest that hypoxia may increase pulmonary vascular permeability, the mechanisms responsible for that effect remain uncertain. Neprilysin (neutral endopeptidase) is a cell surface metallopeptidase that degrades several vasoactive peptides including substance P and bradykinin. We hypothesized that hypoxia could reduce lung neprilysin expression, leading to increased vascular leak. Weanling rats were exposed to normobaric hypoxia (inspired O(2) fraction = 0.1). Lung neprilysin activity was significantly decreased after 24 and 48 h of hypoxia (P < 0.006). The decrease in enzyme activity was associated with decreased lung neprilysin protein content and decreased lung neprilysin mRNA expression. Immunohistochemistry showed a predominantly perivascular distribution of neprilysin, with clear reductions in neprilysin immunoreactivity after exposure to hypoxia. Exposure to hypoxia for 24 h also caused marked increases in vascular leak (P = 0.008), which were reversed by the administration of recombinant neprilysin. The hypoxia-induced increase in leak was also reversed by substance P and bradykinin receptor antagonists. We conclude that in young rats hypoxia decreases lung neprilysin expression, which contributes to increased pulmonary vascular leak via substance P and bradykinin receptors.  相似文献   

10.
The coupling of intravascular and interstitial flow is a distinct feature of tumor microcirculation, due to the high vessel permeability, the low osmotic pressure gradient as well as the absence of functional lymphatic system inside tumors. In this paper, a coupled mathematical model of tumor microcirculation is developed, which provides the link between microvasculature and interstitial space perfusion through the matrices determining a neighbor point belonging to either connected vessel (matrix B) or interstitial space (matrix A), and combines the intravascular and interstitial flow by vascular leaky terms. In addition, the compliance of tumor vessels, blood rheology with hematocritic distribution at branches is also considered. The microvascular network, on which the microcirculation calculation is carried out, is generated from our two-dimensional 9-point (2D9P) model of tumor angiogenesis, improved from the previous 2D5P one. A specific coupling procedure is developed in the study to couple the intravascular and interstitial flow. It is based on the iteratively numerical simulation techniques, including local iterations at individual parameter level and one global loop to provide coupling and simulation convergence. The simulation results not only present the basic features and characteristics of tumor microcirculation, which agree with the corresponding experimental observations reported, but also predict an intimate relationship between the tumor intravascular and interstitial flow quantitatively. Among the parameters, the vascular leakiness is a key to govern the systemic flowing pattern, influence the tumor internal environment and contribute to the metastasis of tumor cells, which could not be presented by the previous uncoupled models.  相似文献   

11.
An extract of the whole brain of the frog Rana ridibunda contained high concentrations of substance P-like immunoreactivity, measured with an antiserum directed against the COOH-terminal region of mammalian substance P and neurokinin B-like immunoreactivity, measured with an antiserum directed against the NH2-terminus of neurokinin B. The primary structure of the substance P-related peptide (ranakinin) was established as: Lys-Pro-Asn-Pro-Glu-Arg-Phe-Tyr-Gly-Leu-Met-NH2. Mammalian substance P was not present in the extract. The primary structure of the neurokinin B-related peptide was established as: Asp-Met-His-Asp-Phe-Phe-Val-Gly-Leu-Met-NH2. This amino acid sequence is the same as that of mammalian neurokinin B. Ranakinin was equipotent with substance P and [Sar9,Met(O2)11]substance P in inhibiting the binding of 125I-Bolton-Hunter-[Sar9,Met(O2)11]substance P, a selective radioligand for the NK1 receptor, to binding sites in rat submandibular gland membranes (IC50 1.6 +/- 0.3 nM; n = 5). It is concluded that ranakinin is a preferred agonist for the mammalian NK1 tachykinin receptor subtype.  相似文献   

12.
In the experiments on rats it was shown that 5-hour immobilization induced the disturbances of terminal blood flow, degranulation of mast cells, increase of venular permeability and contractile activity of lymphaticus. I/p injection SP1-11 (125 micrograms/kg) before stress aggravated the disturbances caused by immobilization. The prophylactic i/p injection SP1-4 induced tranquilizing (100%), sedative (30%) or narcosis (20%) effect. In the rats with sedative or narcosis effects the relative normalization of components of microcirculatory system was observed.  相似文献   

13.
The effect of parmidin (pyridinolcarbamate) on microvascular permeability of several organs has been studied on experimental mice and rats using different models of increased vascular permeability, returned to normal by the drug due to its antibradykinine properties. The experimental results correlate with the clinical data on parmidin applied in therapy of a number of diseases associated with abnormal microcirculation.  相似文献   

14.
In the experiments on anesthetized rats the television analysing system (LEITZ-TAS) was used for evaluation of quantitative structure-functional characteristics of microcirculation under intravital conditions and the development of microvessel network, for measuring geometric parameters of microvessels and blood flow change in them, as well as to define the degree and spreading of the disturbances in the vessel wall permeability.  相似文献   

15.
Tanaka Y  Marumo T  Omura T  Yoshida S 《Life sciences》2007,81(17-18):1381-1388
Previous studies have described microvascular disturbances downstream of occluded large vessels arising during the acute phase (several hours) following cerebral ischemic insult. Prolonged microvascular disturbances may cause delayed neuronal cell death in ischemic penumbral regions, leading to expanded brain infarctions and poor neurological and functional outcomes. The lack of simple and quantitative methods for investigating this microcirculation failure suggests the need to develop a new method for clarifying the precise distribution and persistence of post-ischemic microvascular disturbances. The present study used a silicone rubber casting method in quantitative analyses of microvascular conditions in photochemically-induced thromboembolic (PIT) stroke rat models. After the casting procedure in rats with PIT stroke, a 6 microm-thick coronal section was obtained, and quantitative analyses of microvascular density and measurements of the infarct area in the serial section were performed. The major findings of the present study are as follows: (1) Silicone rubber casting techniques can be applied to precise quantitative analyses of microvessels in the same individual in whom brain infarct volume was measured; (2) the persistence and spatial distribution of microvascular disturbances assessed at the ischemic core, ischemic penumbra, and non-ischemic regions strongly suggest that microvascular disturbances affect brain infarct expansion; (3) the current method demonstrated the protective effects of MK-801 on microvessels, indicating that the technique may be useful in investigating factors that provide vascular protection. The experimental procedure introduced here would facilitate future evaluations of vascular protective agents.  相似文献   

16.
Systemic hypoxia produces an inflammatory response characterized by increases in reactive O(2) species (ROS), venular leukocyte-endothelial adherence and emigration, and vascular permeability. Inflammation is typically initiated by mediators released from activated perivascular cells that generate the chemotactic gradient responsible for extravascular leukocyte accumulation. These experiments were directed to study the possible participation of mast cells in hypoxia-induced microvascular inflammation. Mast cell degranulation, ROS levels, leukocyte adherence and emigration, and vascular permeability were studied in the mesenteric microcirculation by using intravital microscopy of anesthetized rats. The main findings were 1) activation of mast cells with compound 48/80 in normoxia produced microvascular effects similar, but not identical, to those of hypoxia; 2) systemic hypoxia resulted in rapid mast cell degranulation; 3) blockade of mast cell degranulation with cromolyn prevented or attenuated the hypoxia-induced increases in ROS, leukocyte adherence/emigration, and vascular permeability; and 4) mast cell degranulation during hypoxia was prevented by administration of the antioxidant lipoic acid and of nitric oxide. These results show that mast cells play a key role in hypoxia-induced inflammation and suggest that alterations in the ROS-nitric oxide balance may be involved in mast cell activation during hypoxia.  相似文献   

17.
In the rat larynx, plasma exudation and edema formation were studied by light and electron microscopy after i.v. injections of the mast cell activator compound 48/80, substance P, and capsaicin. The morphological effects of substance P and capsaicin on connective tissue mast cells in vivo were also examined. Of the drugs tested, only compound 48/80 degranulated the connective tissue mast cells. All drugs induced a subepithelial plasma exudation in the subglottic region, with edema in the lamina propria and widened intraepithelial intercellular spaces, though the tight junction regions seemed intact. In the epiglottis, 10 min after compound 48/80 injection, there was edema in the lamina propria on the lingual side, with an intact and tight epithelial lining. No morphological sign of edema was found in the epiglottis after injection of substance P or capsaicin. The pronounced effect found in the epiglottic region after compound 48/80 injection was due to the release of mediators such as histamine and 5-hydroxytryptamine from the connective tissue mast cells. This study supports the belief that substance P in vivo mediates an increased vascular permeability by a direct effect on the blood vessels – a mechanism distinct from mast cell degranulation.  相似文献   

18.
Capsaicin, substance P, and ovalbumin, instilled into the bladders of naive and ovalbumin (OVA) sensitized guineapigs caused inflammation, as indicated by increased vascular permeability. Histological changes after exposure to these compounds progressed with time from intense vasodilatation to marginalization of granulocytes followed by interstitial migration of leukocytes. In vitro incubation of guinea-pig bladder tissue with substance P and ovalbumin stimulated release of prostaglandin D(2) and leukotrienes. In vitro incubation of bladder tissue with capsaicin, OVA, prostaglandin D(2), leukotriene C(4), histamine, or calcium ionophore A-23587 all stimulated substance P release. These data suggest that bladder inflammation initiated by a variety of stimuli could lead to a cyclic pattern of release of inflammatory mediators and neuropeptides, which could result in amplification and persistence of cystitis after the inciting cause has subsided.  相似文献   

19.
Estrogen induces a rapid increase in microvascular permeability in the rodent uterus, leading to stromal edema and a marked increase in uterine wet weight. This edema is believed to create an environment optimal for the growth and remodeling of the endometrium in preparation for implantation and pregnancy. Increased endometrial microvascular permeability also occurs in conjunction with implantation. Estrogen-induced uterine edema is immediately preceded by an increase in the expression of vascular endothelial growth factor (VEGF), a potent stimulator of microvascular permeability. The objective of this study was to determine to what degree immunoneutralization of VEGF would interfere with a) estradiol-induced uterine edema and b) pregnancy. In the first set of experiments, immature female rats were injected with either VEGF antiserum or normal rabbit serum (NRS) prior to 17beta-estradiol treatment. Rats treated with estradiol alone showed a 57% increase in uterine wet weight at 6 h compared with controls. Injection of 200 or 300 micro l of VEGF antiserum reduced the response to only 20% and 10% above controls, respectively. In the second set of experiments, young adult female mice were treated with 100 micro l of either VEGF antiserum or NRS at 1200 h on the fourth day after mating. NRS-treated mice had normal pregnancies. VEGF antiserum, however, completely blocked pregnancy. When VEGF antiserum-treated females were examined on Day 5 for the presence of implantation sites, none were found. These results show that a) VEGF is the major mediator of estrogen-induced increase in uterine vascular permeability and b) VEGF-induced edema is absolutely essential for implantation to take place.  相似文献   

20.
The purpose of this study was to determine whether protein tyrosine kinase, a ubiquitous family of intracellular signaling enzymes that regulates endothelial cell function, modulates bradykinin- and substance P-induced increase in macromolecular efflux from the intact hamster cheek pouch microcirculation. Using intravital microscopy, I found that suffusion of bradykinin or substance P (each, 0.5 and 1.0 microM) onto the cheek pouch elicited significant, concentration-dependent leaky site formation and increase in clearance of fluorescein isothiocyanate-dextran (FITC-dextran; molecular mass, 70 kDa; P < 0.05). These responses were significantly attenuated by suffusion of genistein (1.0 microM) or tyrphostin 25 (10 microM), two structurally unrelated, nonspecific protein tyrosine kinase inhibitors (P < 0.05). Conceivably, the kinase(s) involved in this process could be agonist specific because genistein was more effective than tyrphostin 25 in attenuating bradykinin-induced responses while the opposite was observed with substance P. Both inhibitors had no significant effects on adenosine (0.5 M)-induced responses (P > 0.5). Collectively, these data suggest that the protein tyrosine kinase metabolic pathway modulates, in part, the edemagenic effects of bradykinin and substance P in the intact hamster cheek pouch microcirculation in a specific fashion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号