首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The clone TA10 is a T3+ T4+ T8- proliferative and cytolytic human T cell clone. This clone has been shown to be specific for the hemagglutinin of influenza A Texas virus and restricted by an HLA class II molecule associated with the DRw8-Dw8.1 phenotype. Here we show that TA10 and all of its subclones can also react with eight HLA-DRw8 negative, Epstein-Barr virus (EBV)-transformed cell lines or phytohemagglutinin blasts in the absence of influenza antigens. All of these cell lines are HLA-DR2/DR4 with a classic DR2 long haplotype. The only nonreactive HLA-DR2/DR4 cell line observed bears a DR2 short haplotype. Only heterozygous HLA-DR2/DR4 but not parental DR2 or DR4 EBV-transformed cell lines can be recognized by TA10, indicating that the cross-reacting determinant is a transcomplementation product between HLA-DR2 and HLA-DR4 haplotypes. DR-specific, but not DQ- or DP-specific monoclonal antibodies, inhibit in the proliferation assay and in the chromium release test both the DRw8-Dw8.1-restricted and the anti-DR2/DR4 reactions. These results show that HLA-DR-restricted, anti-viral human T cell clone can evidence cross-reactivity for allospecific class II molecules of the major histocompatibility complex, and human CTL can recognize transcomplementation products of class II HLA genes. In addition, the results suggest that a beta-chain coded for by an HLA-DR gene and associated with an alpha-chain coded for by a still unidentified but possibly HLA-DQ gene constitute this functional transcomplementation product.  相似文献   

2.
The mAb 131 to a determinant preferentially expressed on the gene products of the HLA-A locus, the mAb Q6/64 and 4E to determinants preferentially expressed on the gene products of the HLA-B locus, the anti-HLA-A2,A28 mAb CR11-351, HO-2, HO-3, HO-4, and KS1, and the anti-HLA-B7 cross-reacting group mAb KS4 enhanced proliferation of T cells in most, if not all, the PBMC preparations stimulated with the anti-CD2 mAb 9-1 + 9.6. The mAb CR10-215, W6/32, and 6/31 to distinct monomorphic determinants of HLA class I antigens enhanced CD2-induced T cell proliferation in at most 30% of the PBMC preparations tested. The anti human beta 2-microglobulin (beta 2-mu) mAb NAMB-1 displayed no detectable effect on the proliferation of T cells stimulated with the mAb 9-1 + 9.6. The enhancing effect of anti-HLA class I mAb is specific, is dose dependent, is not abrogated by the addition of exogenous IL-1 and IL-2 to the cultures, and reflects the interaction of anti-HLA class I mAb with T cells. Enhancement of CD2 mediated proliferation of T cells is not a unique property of anti-HLA class I mAb, since the anti-HLA class II mAb Q5/6 and Q5/13 also had a similar effect. Analysis of the kinetics of the enhancing effect of anti-HLA class I mAb suggests that they modulate an early event of T cell activation and may affect the interaction of T cells with mAb 9-1. Phenotyping of T lymphocytes activated by mAb 9-1 + 9.6 in the presence of anti-HLA class I mAb suggests that the enhancing effect of anti-HLA class I mAb may reflect the recruitment of a higher percentage of T cells. The present study has shown for the first time that certain, but not all, the determinants of the HLA class I molecular complex are involved in the proliferation of T cells stimulated with the anti-CD2 mAb 9-1 + 9.6. Furthermore, the inhibitory effect of mAb CR11-351, KS1, Q6/64, and W6/32 on the proliferation of T cells stimulated with mAb OKT3 or with mAb BMA 031 indicates that the same determinants of HLA class I antigens play a differential regulatory role in T cell proliferation induced via the CD2 and CD3 pathway.  相似文献   

3.
This study investigated the incorporation of cis-9,trans-11 conjugated linoleic acid (c9,t11 CLA) and trans-10,cis-12-CLA (t10,c12 CLA) into plasma and peripheral blood mononuclear cell (PBMC) lipids when consumed as supplements highly enriched in these isomers. Healthy men (n = 49, age 31 +/- 8 years) consumed one, two, and four capsules containing approximately 600 mg of either c9,t11 CLA or t10,c12 CLA per capsule for sequential 8 week periods followed by a 6 week washout before consuming the alternative isomer. Both isomers were incorporated in a dose-dependent manner into plasma phosphatidylcholine (PC) (c9,t11 CLA r = 0.779, t10,c12 CLA r = 0.738; P < 0.0001) and cholesteryl ester (CE) (c9,t11 CLA r = 0.706, t10,c12 CLA r = 0.788; P < 0.0001). Only t10,c12 CLA was enriched in plasma nonesterified fatty acids. Both c9,t11 CLA and t10,c12 CLA were incorporated linearly into PBMC total lipids (r = 0.285 and r = 0.273, respectively; P < 0.0005). The highest concentrations of c9,t11 CLA and t10,c12 CLA in PBMC lipids were 3- to 4-fold lower than those in plasma PC and CE. These data suggest that the level of intake is a major determinant of plasma and PBMC CLA content, although PBMCs appear to incorporate both CLA isomers less readily.  相似文献   

4.
We have found that the low immune response to streptococcal cell wall Ag (SCW) was inherited as a dominant trait and was linked to HLA, as deduced from family analysis. In the present report, HLA class II alleles of healthy donors were determined by serology and DNA typing to identify the HLA alleles controlling low or high immune responses to SCW. HLA-DR2-DQA1*0102-DQB1*0602(DQw6)-Dw2 haplotype or HLA-DR2-DQA1*0103-DQB1*0601(DQw6)-DW12 haplotype was increased in frequency in the low responders and the frequency of HLA-DR4-DRw53-DQA1*0301-DQB1*0401(DQw4)-Dw15 haplotype or HLA-DR9-DRw53-DQA1*0301-DQB1*0303(DQw3)-Dw23 haplotype was increased in the high responders to SCW. Homozygotes of either DQA1*0102 or DQA1*0103 exhibited a low responsiveness to SCW and those of DQA1*0301 were high responders. The heterozygotes of DQA1*0102 or 0103 and DQA1*0301 showed a low response to SCW, thereby confirming that the HLA-linked gene controls the low response to SCW, as a dominant trait. Using mouse L cell transfectants expressing a single class II molecule as the APC, we found that DQw6(DQA1*0103 DQB1*0601) from the low responder haplotype (DR2-DQA1*0103-DQB1*0601(DQw6)-Dw12) activated SCW-specific T cell lines whereas DQw4(DQA1*0301 DQB1*0401) from the high responder haplotype (DR4-DRw53-DQA1*0301-DQB1*0401(DQw4)-Dw15) did not activate T cell lines specific to SCW. However, DR4 and DR2 presented SCW to CD4+ T cells in both the high and low responders to SCW, hence the DR molecule even from the low responder haplotype functions as an restriction molecule in the low responders. Putative mechanisms linked to the association between the existence of DQ-restricted CD4+ T cells specific to SCW, and low responsiveness to SCW are discussed.  相似文献   

5.
6.
Antigenic analyses of Lactobacillus bulgaricus, Lactobacillus lactis, Lactobacillus brevis and Lactobacillus buchneri were carried out by double immunodiffusion in agar. Antigens were extracted from whole cells and cell wall preparations with cold trichloroacetic acid. Most strains of the four species possessed antigen 9 in their cell walls. Another antigen, antigen 10, was found in the cell walls of all the strains of L. brevis and L. buchneri, and in some strains of L. lactis, but not in L. bulgaricus. Fractionation of the antigens was attempted using the cell wall extracts of L. lactis L-10 with only antigen 9 and of L. brevis X-1 with both antigens 9 and 10. The partially purified fractions of antigen 9 and of the complex of antigens 9 and 10 were obtained by zone electrophoresis. However, antigen 10 from the complex could not be separated by the same method or gel filtration on Sephadex G-100 since the two antigens 9 and 10 of the complex always behaved together. The fraction of antigen 9 consisted almost entirely of glycerol and glucose as sugar components, the molar ratio being 2: 1. The complex of antigens 9 and 10 also consisted of the same sugars, and the molar ratio of glycerol: glucose was 4: 1. Inhibition tests indicated that the immunodominant component of antigen 9 was a-methylglucoside (glucose), and most probably the determinant is a glycosylated glycerol teichoic acid. It was considered that the determinant of antigen 10 is a glycerol teichoic acid although glucosamine and galactosamine inhibited effectively the reaction between antigen 10 and its antibody.  相似文献   

7.
Using pulsed field gel electrophoresis (PFGE), we have examined the rat major histocompatibility complex (MHC) for the presence of a number of new class III region genes recently identified in the human MHC. We find homologous genes to the human G1, G2, G4, G7a, G9, G9a, G10, G13, G15, and G18 genes, but not the G8 gene in the rat genome, and show that these are linked to the rat TNF- and C4/Slp loci. A long-range restriction map has been constructed on the basis of a PFGE analysis which demonstrates extensive co-linearity in the positions of the homologous sequences in the region between the C4/Slp and TNF loci in the rat MHC when compared with that of the human MHC class III region.Deceased.  相似文献   

8.
Human T cells that recognize a major epitope of the hepatitis B surface antigen were studied for their ability to react with antigen when presented by mouse fibroblasts that express class II products of the human major histocompatibility gene complex after gene transfection. L cells expressing HLA-DPw4, but not those expressing HLA-DR4 or HLA-DR7, induced strong proliferative responses of antigen-specific T cells to either hepatitis B surface antigen or the synthetic peptide S1d, which bears the immunodominant T-cell epitope. These results identified a genetic restriction element of human helper T-lymphocyte responses to a major antigenic determinant of hepatitis B virus and might be important in the design of subunit vaccines to this pathogen. Peptides that induce T-cell responses that are restricted by a frequently encountered major histocompatibility complex molecule in the general population such as DPw4 would be ideal candidates as subunit vaccines.  相似文献   

9.
Compstatin, a 13-mer cyclic peptide, is a novel and promising inhibitor of the activation of the complement system. In our search for a more active analog and better understanding of structure-functions relations, we designed a phage-displayed random peptide library based on previous knowledge of structure activity relations, in which seven amino acids deemed necessary for structure and activity were kept fixed while the remaining six were optimized. Screening of this library against C3 identified four binding clones. Synthetic peptides corresponding to these clones revealed one analog, called acetylated Ile(1)Leu/His(9)Trp/Thr(13)Gly triple replacement analog of compstatin corresponding to clone 640 (Ac-I1L/H9W/T13G), which was more active than compstatin. This newly identified peptide had 4-fold higher activity when compared with the originally isolated form of compstatin and 1.6-fold higher activity when compared with acetylated compstatin (Ac-compstatin). The structures of Ac-I1L/H9W/T13G and Ac-compstatin were studied by nuclear magnetic resonance, compared with the structure of compstatin, and found to be very similar. The binding of Ac-I1L/H9W/T13G and the equally active acetylated analog with His(9)Ala replacement (Ac-H9A) to C3 was evaluated by surface plasmon resonance, which suggested similarity in their binding mechanism but difference when compared with Ac-compstatin. Compensatory effects of flexibility outside the beta-turn and tryptophan ring stacking may be responsible for the measured activity increase in Ac-I1L/H9W/T13G and acetylated analog with His(9)Ala replacement and the variability in binding mechanism compared with Ac-compstatin. These data demonstrate that tryptophan is a key amino acid for activity. Finally, the significance of the N-terminal acetylation was examined and it was found that the hydrophobic cluster at the linked termini of compstatin is essential for binding to C3 and for activity.  相似文献   

10.
Monoclonal antibodies (mAb) to monomorphic and polymorphic determinants on the heavy chain of histocompatibility leukocyte antigen (HLA) class I antigens inhibit mAb OKT3-induced T cell proliferation, whereas the anti-beta 2-microglobulin mAb NAMB-1 does not affect it. The inhibitory effect of anti-HLA class I mAb is specific, is not an Fc-mediated phenomenon, does not require accessory cells, and does not involve early stages of T cell activation. Distinct determinants of HLA class I antigens regulate T cell proliferation by different mechanisms, because the anti-HLA-A2, A28 mAb CR11-351, and the mAb W6/32 to a framework determinant of HLA class I antigens block interleukin 2 (IL-2) secretion and IL-2 receptor expression, whereas the mAb CR10-215 to a monomorphic determinant blocks only IL-2 receptor expression. The mAb CR10-215 and W6/32 induced a 50% of maximal inhibition of T cell proliferation, when added after 27 and 12 hr, respectively, of incubation of peripheral blood mononuclear cells with mAb OKT3. On the other hand, the mAb CR11-351 inhibited T cell proliferation even when added after 38 hr of incubation of peripheral blood mononuclear cells with mAb OKT3 and was the only one to inhibit proliferation of cycling T lymphocytes. It is suggested that HLA class I antigens regulate T cell proliferation by interacting with cell-surface molecules involved in T cell activation. The differential inhibitory activity of the anti-HLA class I monoclonal antibodies tested may reflect the different ability of the corresponding determinants to interact with activation molecules.  相似文献   

11.
The genetic engineering of Mycobacterium bovis-bacillus Calmette-Guérin to express foreign epitopes is an attractive strategy in the field of epitope vaccines. We constructed an 'epitope-trap vector' with Mycobacterium tuberculosis chaperonin-10 as a carrier antigen and used it to express the HIV-1 principal neutralizing determinant epitope. We also identified a new chaperonin-10 promoter that was hyperexpressive compared with the heat shock protein-65 promoter. Splenocytes from recombinant bacillus Calmette-Guérin-immunized mice showed enhanced lymphocyte proliferation and interleukin-4 (but not interferon-gamma) secretion. The recombinant bacillus Calmette-Guérin-immunized group also exhibited mild delayed-type hypersensitivity reaction and a high frequency of CD3+CD45RBlow-activated T cells, together with high titer of antiprincipal neutralizing determinant immunoglobulin G antibodies. Thus, this epitope delivery system induced strong epitope-specific T-h-2 polarization.  相似文献   

12.
13.
Rapid progression of hepatitis C virus (HCV) disease in patients with HIV/HCV may reflect different cytokine responses and be influenced by HCV genotype. This is addressed by a study of patients with HIV/HCV coinfection and infection with HCV genotype 2 or 3 (2/3). They are compared with coinfected patients infected with genotype 1 and HCV monoinfected patients matched for HCV genotype. IFN-gamma, IL-10, IL-4 and IL-4delta2 mRNA were quantified by real-time PCR in unstimulated PBMC and after in vitro stimulation with HCV core or nonstructural 3/4A antigen. In unstimulated PBMC, levels of IFN-gamma and IL-4 mRNA were lowest in HIV/HCV genotype 1 patients, intermediate in HIV/HCV genotype 2/3 patients and highest in HCV genotype 2/3 patients. Neither HCV genotype nor HIV affected levels of IL-10 mRNA in unstimulated PBMC or IFN-gamma, IL-4 and IL-10 mRNA in PBMC stimulated with HCV antigens. Levels of IL-4 and IL-4delta2 mRNA correlated in mitogen-stimulated PBMC from all patient groups but both were low in HIV/HCV genotype 1 patients. Serum soluble CD30 levels (a putative marker of a T2 cytokine environment) did not differ between patient groups. The data do not suggest a shift in the T1/T2 balance driven by HIV coinfection or HCV genotype but either may affect IL-4 bioavailability.  相似文献   

14.
Monoclonal antibodies (Mab) with specificity for protein I (PI) from Neisseria gonorrhoeae (GC) were examined for bactericidal activity. Mab 4G5 (gamma 3), ID3 (gamma 2a), and 1G6 (gamma 2a) bound to surface-exposed epitopes on PI of GC strain R11 (IA serotype) as assessed by co-agglutination and 125I protein A uptake. Mab 2H1 (gamma 3) that were directed against IB serotype strains and Mab 2E9 (gamma 2a) were negative in co-agglutination and protein A uptake assays and served as controls for some experiments. Only 4G5 and 1D3 were bactericidal for R11 when presensitized organisms were incubated in 10% absorbed, pooled normal human serum (PNHS) or 10% hypogammaglobulinemic serum (H gamma S) despite binding of nearly equivalent numbers of 4G5, 1D3, and 1G6 to R11 during presensitization, as assessed by 125I-protein A uptake. These Mab activated complement to a similar extent on GC R11, leading to deposition of 56.4 X 10(3), 61.9 X 1093), and 47.1 X 10(3) molecules of C3/organism during incubation in 10% C8-deficient serum. Deposition occurred almost exclusively via the classical complement pathway. Measurement of complement component C9 binding to R11 during incubation in H gamma S showed 35,700 molecules of C9/organism with 4G5, 32,600 C9/organism with 1D3, and surprisingly, 29,600 C9/organism with 1G6. Eight thousand four hundred molecules of C9/organism bound to 2E9-coated organisms, 6000 C9/organism to 2H1-coated bacteria, and 3600 C9/organism to nonpresensitized organisms. The C5b-9 complex deposited by 4G5 had a different sedimentation profile by sucrose density gradient analysis from the C5b-9 complex deposited by 1G6, consistent with a different molecular configuration of the bound complex. Mab 1G6 and 1D3, but not 2E9 or 2H1, were able to compete with 125I-4G5 for binding to GC R11. A Mab (2E6) directed against protein III of GC competed weakly with 125I-4G5 for binding to GC R11. Mab 1G6, but not 1D3, blocked 4G5-dependent killing in a dose-related fashion. Both 4G5 and IG6 reacted weakly with native PI of GC R11 by immunoblotting, but neither Mab recognized the 34,800 m.w. fragment of PI generated by trypsin and chymotrypsin treatment of outer membranes. In contrast, 2E9 reacted strongly by immunoblot with both native and cleaved PI of GC R11, suggesting binding to buried determinants of PI. These experiments show that Mab directed against identical or closely associated, surface-exposed epitopes on gonococcal PI differ markedly in bactericidal activity, despite leading to deposition of nearly equivalent numbers of C3 and C9 molecules per organism.  相似文献   

15.
For a long time, the bovine major histocompatibility complex (MHC) (BoLA) class I region was characterized, rather uniquely among mammalian species, as having one expressed locus. Recent reports have suggested otherwise. Selective immunoprecipitation and molecular characterization of products enable a decisive answer to the question of whether there is indeed more than one locus expressed. Therefore, we characterized serologically defined w10 encoding haplotypes in European and African cattle by immunoprecipitation of [35S]-methionine-labelled peripheral blood mononuclear cells (PBMC), followed by one- and two-dimensional isoelectric focusing (1D/2D-IEF) of cell lysates. Monoclonal antibodies (mAb) used were directed against either human class I monomorphic determinants (W6/32 and B1.1G6) or bovine polymorphic determinants expressed on products encoded by serologically defined w10 encoding haplotypes of Boran and Friesian cattle. Sequential immunoprecipitations with W6/32 and B1.1G6 using lysates of PBMC of British Friesian cattle, revealed that from this haplotype W6/32 precipitated one product, whereas B1.1G6 precipitated two products. The product precipitated in addition appeared to be the one that was selectively precipitated by the mAb directed against polymorphic determinants on a product of w10 encoding haplotypes. Additionally, peptide maps of protease V8-digested precipitates showed that this particular 'w10' associated product was distinctly different from the product recognized by W6/32. Thus, we suggest that the two products are distinct gene products and that the product with higher pI is associated with the serologically defined A-locus product, whereas the product with lower pI is the putative second locus product. In the African Boran breed, variants of the serologically defined w10 specificity were found on the basis of IEF typing. These variants appeared to be associated with different second locus products. Therefore, we conclude that serologically defined w10 encoding haplotypes encode at least two independent class I locus products, expressed on normal bovine PBMC. In IEF analysis the additional use of mAb recognizing polymorphic determinants on serologically defined A-locus products highly facilitated the detection and typing of second locus products.  相似文献   

16.
Antigenic analyses of Lactobacillus bulgaricus, Lactobacillus lactis, Lactobacillus brevis and Lactobacillus buchneri were carried out by double immunodiffusion in agar. Antigens were extracted from whole cells and cell wall preparations with cold trichloroacetic acid. Most strains of the four species possessed antigen 9 in their cell walls. Another antigen, antigen 10, was found in the cell walls of all the strains of L. brevis and L. buchneri, and in some strains of L. lactis, but not in L. bulgaricus. Fractionation of the antigens was attempted using the cell wall extracts of L. lactis L-10 with only antigen 9 and of L. brevis X-1 with both antigens 9 and 10. The partially purified fractions of antigen 9 and of the complex of antigens 9 and 10 were obtained by zone electrophoresis. However, antigen 10 from the complex could not be separated by the same method or gel filtration on Sephadex G-100 since the two antigens 9 and 10 of the complex always behaved together. The fraction of antigen 9 consisted almost entirely of glycerol and glucose as sugar components, the molar ratio being 2:1. The complex of antigens 9 and 10 also consisted of the same sugars, and the molar ratio of glycerol: glucose was 4:1. Inhibition tests indicated that the immunodominant component of antigen 9 was α-methylglucoside (glucose), and most probably the determinant is a glucosylated glycerol teichoic acid. It was considered that the determinant of antigen 10 is a glycerol teichoic acid although glucosamine and galactosamine inhibited effectively the reaction between antigen 10 and its antibody.  相似文献   

17.
18.
Autoimmune inner ear disease is an enigmatic disorder characterized by recurring episodes of sudden or progressive sensorineural hearing loss. Hearing loss can be improved by timely corticosteroid administration, but only half of those treated respond, and for many responders, that response is lost over time. The mechanisms that control corticosteroid responsiveness in this disorder are largely uncharacterized. We have previously identified that the induction by dexamethasone of IL-1R type II (IL-1R2) expression in PBMC predicts corticosteroid responsiveness in this disorder. In this study, we asked whether IL-1β was overexpressed, and whether clinical corticosteroid responders differentially regulated IL-1β expression or release in response to dexamethasone, as compared with nonresponders. IL-1β has been reported to induce matrix metalloproteinase-9 (MMP-9) expression. Given that metalloproteinases can cleave IL-1R2, we also asked whether MMP-9 expression was altered in this disorder. In this study, we demonstrate that corticosteroid nonresponders have elevated plasma levels of IL-1β and MMP-9 as compared with clinically responsive patients (p = 0.0008 and p = 0.037, respectively). Increasing MMP-9 expression correlated with increasing IL-1β concentration, suggesting that IL-1β expression regulates MMP-9 expression. As expected, monocytes were the predominant producers of IL-1β. In vitro exposure of PBMC to dexamethasone from clinical corticosteroid responders suppressed IL-1β release. PBMC of corticosteroid nonresponders have substantially higher release of IL-1β into the conditioned media, and when exposed to dexamethasone, failed to repress IL-1β release (p = 0.05). Treatment of PBMC from clinical corticosteroid nonresponders with anakinra resulted in repression of IL-1β release, suggesting that IL-1β blockade may be a viable therapy for these patients.  相似文献   

19.
PBMC from healthy adult individuals seropositive for measles virus (MV) were tested for their capacity to proliferate to UV-inactivated MV (UV-MV) or to autologous MV-infected EBV-transformed B cell lines (EBV-BC). MV-specific T cell responses were observed in 11 of 15 donors tested (stimulation index greater than 2), when optimal doses of UV-MV were used in proliferative assays. T cell clones were generated from PBMC of three donors responding to MV, by using either UV-MV or MV-infected autologous EBV-BC as APC. Stimulation with UV-MV generated exclusively CD3+ CD4+ CD8- MV-specific T cells, whereas after stimulation of PBMC with MV-infected EBV-BC, both CD3+ CD4+ CD8- and CD3+ CD4- CD8+ MV-specific T cell clones were obtained. Of 19 CD4+ T cell clones tested so far, 7 clones reacted specifically with purified fusion protein and 1 with purified hemagglutinin protein. Seven clones proliferated in response to the internal proteins of MV. Three clones reacted to whole virus but not to one of the purified proteins, whereas one clone seemed to recognize more than one polypeptide. Some of the T cell clones, generated from in vitro stimulation of PBMC with UV-MV, failed to recognize MV Ag when MV-infected EBV-BC were used as APC instead of UV-MV and PBMC. CD3+ CD4+ CD8- T cell clones recognized MV in association with HLA class II Ag (HLA-DQ or -DR), and most of them displayed CTL activity to autologous MV-infected EBV-BC. All CD4+ HLA class II-restricted CTL clones thus far tested were capable of assisting B lymphocytes for the production of MV-specific antibody. The CD4- CD8+ T cell clone MARO 1 recognized MV in association with HLA class I molecules and displayed cytotoxic activity toward MV-infected EBV-BC.  相似文献   

20.
We established and analyzed human T lymphocyte clones induced by crude Plasmodium falciparum antigens of schizont-enriched asexual blood stages. Peripheral blood mononuclear cells (PBMC) were stimulated for 6 days with antigen, and the T cell blasts were separated and were transferred to limiting dilution cultures with antigen, irradiated PBMC, and recombinant interleukin 2. The following observations were made. Malaria antigen (M.Ag) induced similar proportions of T blasts in PBMC from infected individuals and noninfected controls, and the M.Ag-dependent clone frequencies (1/79 to 1/216) obtained with the blasts were similar. The majority of established clones derived from infected and noninfected subjects specifically recognized M.Ag and would not proliferate in response to red blood cells or autologous PBMC alone. They also required HLA class II determinant-compatible antigen-presenting (E-) cells. With three clones from one malaria patient, DR 1 or DR 5 specificities correlated with antigen presentation. Although T4+ and T8+ blasts were induced by M.Ag in PBMC, only T4 (Leu-3+) clones were obtained in our culture system. These clones secreted IL 2 in response to M.Ag. 4) Differential patterns of reactivity to native M.Ag, heat-stable antigens, and heat-precipitated antigens were exhibited by T cell clones, and the tested clones did not recognize Plasmodium berghei antigen. In conclusion, it is important with regard to previous observations on apparently nonspecific, mitogen-like effects of M.Ag in bulk T cell cultures that our results demonstrate specific recognition of P. falciparum by human T cells. The T cell clones obtained will be an important tool in the quest for a better understanding of the mechanisms involved in resistance to malaria infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号