首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mehdi Mirzaie 《Proteins》2018,86(4):467-474
Evaluation of protein structures needs a trustworthy potential function. Although several knowledge‐based potential functions exist, the impact of different types of amino acids in the scoring functions has not been studied yet. Previously, we have reported the importance of nonlocal interactions in scoring function (based on Delaunay tessellation) in discrimination of native structures. Then, we have questioned the structural impact of hydrophobic amino acids in protein fold recognition. Therefore, a Hydrophobic Reduced Model (HRM) was designed to reduce protein structure of FS (Full Structure) into RS (Reduced Structure). RS is considered as a reduced structure of only seven hydrophobic amino acids (L, V, F, I, A, W, Y) and all their interactions. The presented model was evaluated via four different performance metrics including the number of correctly identified natives, the Z‐score of the native energy, the RMSD of the minimum score, and the Pearson correlation coefficient between the energy and the model quality. Results indicated that only nonlocal interactions between hydrophobic amino acids could be sufficient and accurate enough for protein fold recognition. Interestingly, the results of HRM is significantly close to the model that considers all amino acids (20‐amino acid model) to discriminate the native structure of the proteins on eleven decoy sets. This indicates that the power of knowledge‐based potential functions in protein fold recognition is mostly due to hydrophobic interactions. Hence, we suggest combining a different well‐designed scoring function for non‐hydrophobic interactions with HRM to achieve better performance in fold recognition.  相似文献   

2.
Hyungrae Kim  Daisuke Kihara 《Proteins》2014,82(12):3255-3272
We developed a new representation of local amino acid environments in protein structures called the Side‐chain Depth Environment (SDE). An SDE defines a local structural environment of a residue considering the coordinates and the depth of amino acids that locate in the vicinity of the side‐chain centroid of the residue. SDEs are general enough that similar SDEs are found in protein structures with globally different folds. Using SDEs, we developed a procedure called PRESCO (Protein Residue Environment SCOre) for selecting native or near‐native models from a pool of computational models. The procedure searches similar residue environments observed in a query model against a set of representative native protein structures to quantify how native‐like SDEs in the model are. When benchmarked on commonly used computational model datasets, our PRESCO compared favorably with the other existing scoring functions in selecting native and near‐native models. Proteins 2014; 82:3255–3272. © 2014 Wiley Periodicals, Inc.  相似文献   

3.
Specification of the three dimensional structure of a protein from its amino acid sequence, also called a “Grand Challenge” problem, has eluded a solution for over six decades. A modestly successful strategy has evolved over the last couple of decades based on development of scoring functions (e.g. mimicking free energy) that can capture native or native-like structures from an ensemble of decoys generated as plausible candidates for the native structure. A scoring function must be fast enough in discriminating the native from unfolded/misfolded structures, and requires validation on a large data set(s) to generate sufficient confidence in the score. Here we develop a scoring function called pcSM that detects true native structure in the top 5 with 93% accuracy from an ensemble of candidate structures. If we eliminate the native from ensemble of decoys then pcSM is able to capture near native structure (RMSD < = 5 ?) in top 10 with 86% accuracy. The parameters considered in pcSM are a C-alpha Euclidean metric, secondary structural propensity, surface areas and an intramolecular energy function. pcSM has been tested on 415 systems consisting 142,698 decoys (public and CASP—largest reported hitherto in literature). The average rank for the native is 2.38, a significant improvement over that existing in literature. In-silico protein structure prediction requires robust scoring technique(s). Therefore, pcSM is easily amenable to integration into a successful protein structure prediction strategy. The tool is freely available at http://www.scfbio-iitd.res.in/software/pcsm.jsp.  相似文献   

4.
A new computer program (CORE) is described that predicts core hydrophobic sequences of predetermined target protein structures. A novel scoring function is employed, which for the first time incorporates parameters directly correlated to free energies of unfolding (deltaGu), melting temperatures (Tm), and cooperativity. Metropolis-driven simulated annealing and low-temperature Monte Carlo sampling are used to optimize this score, generating sequences predicted to yield uniquely folded, stable proteins with cooperative unfolding transitions. The hydrophobic core residues of four natural proteins were predicted using CORE with the backbone structure and solvent exposed residues as input. In the two smaller proteins tested (Gbeta1, 11 core amino acids; 434 cro, 10 core amino acids), the native sequence was regenerated as well as the sequence of known thermally stable variants that exhibit cooperative denaturation transitions. Previously designed sequences of variants with lower thermal stability and weaker cooperativity were not predicted. In the two larger proteins tested (myoglobin, 32 core amino acids; methionine aminopeptidase, 63 core amino acids), sequences with corresponding side-chain conformations remarkably similar to that of native were predicted.  相似文献   

5.
6.
Pairs of helices in transmembrane (TM) proteins are often tightly packed. We present a scoring function and a computational methodology for predicting the tertiary fold of a pair of alpha-helices such that its chances of being tightly packed are maximized. Since the number of TM protein structures solved to date is small, it seems unlikely that a reliable scoring function derived statistically from the known set of TM protein structures will be available in the near future. We therefore constructed a scoring function based on the qualitative insights gained in the past two decades from the solved structures of TM and soluble proteins. In brief, we reward the formation of contacts between small amino acid residues such as Gly, Cys, and Ser, that are known to promote dimerization of helices, and penalize the burial of large amino acid residues such as Arg and Trp. As a case study, we show that our method predicts the native structure of the TM homodimer glycophorin A (GpA) to be, in essence, at the global score optimum. In addition, by correlating our results with empirical point mutations on this homodimer, we demonstrate that our method can be a helpful adjunct to mutation analysis. We present a data set of canonical alpha-helices from the solved structures of TM proteins and provide a set of programs for analyzing it (http://ashtoret.tau.ac.il/~sarel). From this data set we derived 11 helix pairs, and conducted searches around their native states as a further test of our method. Approximately 73% of our predictions showed a reasonable fit (RMS deviation <2A) with the native structures compared to the success rate of 8% expected by chance. The search method we employ is less effective for helix pairs that are connected via short loops (<20 amino acid residues), indicating that short loops may play an important role in determining the conformation of alpha-helices in TM proteins.  相似文献   

7.
The design of novel metal‐ion binding sites along symmetric axes in protein oligomers could provide new avenues for metalloenzyme design, construction of protein‐based nanomaterials and novel ion transport systems. Here, we describe a computational design method, symmetric protein recursive ion‐cofactor sampling (SyPRIS), for locating constellations of backbone positions within oligomeric protein structures that are capable of supporting desired symmetrically coordinated metal ion(s) chelated by sidechains (chelant model). Using SyPRIS on a curated benchmark set of protein structures with symmetric metal binding sites, we found high recovery of native metal coordinating rotamers: in 65 of the 67 (97.0%) cases, native rotamers featured in the best scoring model while in the remaining cases native rotamers were found within the top three scoring models. In a second test, chelant models were crossmatched against protein structures with identical cyclic symmetry. In addition to recovering all native placements, 10.4% (8939/86013) of the non‐native placements, had acceptable geometric compatibility scores. Discrimination between native and non‐native metal site placements was further enhanced upon constrained energy minimization using the Rosetta energy function. Upon sequence design of the surrounding first‐shell residues, we found further stabilization of native placements and a small but significant (1.7%) number of non‐native placement‐based sites with favorable Rosetta energies, indicating their designability in existing protein interfaces. The generality of the SyPRIS approach allows design of novel symmetric metal sites including with non‐natural amino acid sidechains, and should enable the predictive incorporation of a variety of metal‐containing cofactors at symmetric protein interfaces.  相似文献   

8.
A set of "similarity-parameters" was calculated that reflects the influence of the proteinogenic amino acids on the structure of the protein backbone. The parameters were derived from a detailed analysis of the amino acid specific main-chain torsion angle distributions as they are found in proteins (highly resolved protein structures from the Brookhaven Protein Data Bank). The purpose of these parameters is threefold: (1) they should help in estimating the structural effect of an amino acid substitution during the design of new mutants in protein-engineering; (2) in modeling by homology they should mark places in the protein where changes in the folding are expected; and (3) they should form a scoring matrix in protein sequence alignment superior to identity scoring. The usability of the "structure derived correlation matrix (SCM)" for these purposes is assessed and demonstrated for some examples in the paper.  相似文献   

9.
10.
Hsieh MJ  Luo R 《Proteins》2004,56(3):475-486
A well-behaved physics-based all-atom scoring function for protein structure prediction is analyzed with several widely used all-atom decoy sets. The scoring function, termed AMBER/Poisson-Boltzmann (PB), is based on a refined AMBER force field for intramolecular interactions and an efficient PB model for solvation interactions. Testing on the chosen decoy sets shows that the scoring function, which is designed to consider detailed chemical environments, is able to consistently discriminate all 62 native crystal structures after considering the heteroatom groups, disulfide bonds, and crystal packing effects that are not included in the decoy structures. When NMR structures are considered in the testing, the scoring function is able to discriminate 8 out of 10 targets. In the more challenging test of selecting near-native structures, the scoring function also performs very well: for the majority of the targets studied, the scoring function is able to select decoys that are close to the corresponding native structures as evaluated by ranking numbers and backbone Calpha root mean square deviations. Various important components of the scoring function are also studied to understand their discriminative contributions toward the rankings of native and near-native structures. It is found that neither the nonpolar solvation energy as modeled by the surface area model nor a higher protein dielectric constant improves its discriminative power. The terms remaining to be improved are related to 1-4 interactions. The most troublesome term is found to be the large and highly fluctuating 1-4 electrostatics term, not the dihedral-angle term. These data support ongoing efforts in the community to develop protein structure prediction methods with physics-based potentials that are competitive with knowledge-based potentials.  相似文献   

11.
We present a new structurally derived pair-to-pair substitution matrix (P2PMAT). This matrix is constructed from a very large amount of integrated high quality multiple sequence alignments (Blocks) and protein structures. It evaluates the likelihoods of all 160,000 pair-to-pair substitutions. P2PMAT matrix implicitly accounts for evolutionary conservation, correlated mutations, and residue-residue contact potentials. The usefulness of the matrix for structural predictions is shown in this article. Predicting protein residue-residue contacts from sequence information alone, by our method (P2PConPred) is particularly accurate in the protein cores, where it performs better than other basic contact prediction methods (increasing accuracy by 25-60%). The method mean accuracy for protein cores is 24% for 59 diverse families and 34% for a subset of proteins shorter than 100 residues. This is above the level that was recently shown to be sufficient to significantly improve ab initio protein structure prediction. We also demonstrate the ability of our approach to identify native structures within large sets of (300-2000) protein decoys. On the basis of evolutionary information alone our method ranks the native structure in the top 0.3% of the decoys in 4/10 of the sets, and in 8/10 of sets the native structure is ranked in the top 10% of the decoys. The method can, thus, be used to assist filtering wrong models, complementing traditional scoring functions.  相似文献   

12.
Arriving at the native conformation of a polypeptide chain characterized by minimum most free energy is a problem of long standing interest in protein structure prediction endeavors. Owing to the computational requirements in developing free energy estimates, scoring functions--energy based or statistical--have received considerable renewed attention in recent years for distinguishing native structures of proteins from non-native like structures. Several cleverly designed decoy sets, CASP (Critical Assessment of Techniques for Protein Structure Prediction) structures and homology based internet accessible three dimensional model builders are now available for validating the scoring functions. We describe here an all-atom energy based empirical scoring function and examine its performance on a wide series of publicly available decoys. Barring two protein sequences where native structure is ranked second and seventh, native is identified as the lowest energy structure in 67 protein sequences from among 61,659 decoys belonging to 12 different decoy sets. We further illustrate a potential application of the scoring function in bracketing native-like structures of two small mixed alpha/beta globular proteins starting from sequence and secondary structural information. The scoring function has been web enabled at www.scfbio-iitd.res.in/utility/proteomics/energy.jsp.  相似文献   

13.
Smith JM  Jang Y  Kim MK 《Proteins》2007,66(4):889-902
The Steiner Minimal Tree (SMT) problem determines the minimal length network for connecting a given set of vertices in three-dimensional space. SMTs have been shown to be useful in the geometric modeling and characterization of proteins. Even though the SMT problem is an NP-Hard Optimization problem, one can define planes within the amino acids that have a surprising regularity property for the twist angles of the planes. This angular property is quantified for all amino acids through the Steiner tree topology structure. The twist angle properties and other associated geometric properties unique for the remaining amino acids are documented in this paper. We also examine the relationship between the Steiner ratio rho and the torsion energy in amino acids with respect to the side chain torsion angle chi(1). The rho value is shown to be inversely proportional to the torsion energy. Hence, it should be a useful approximation to the potential energy function. Finally, the Steiner ratio is used to evaluate folded and misfolded protein structures. We examine all the native proteins and their decoys at http://dd.stanford.edu. and compare their Steiner ratio values. Because these decoy structures have been delicately misfolded, they look even more favorable than the native proteins from the potential energy viewpoint. However, the rho value of a decoy folded protein is shown to be much closer to the average value of an empirical Steiner ratio for each residue involved than that of the corresponding native one, so that we recognize the native folded structure more easily. The inverse relationship between the Steiner ratio and the energy level in the protein is shown to be a significant measure to distinguish native and decoy structures. These properties should be ultimately useful in the ab initio protein folding prediction.  相似文献   

14.
Abstract

Arriving at the native conformation of a polypeptide chain characterized by minimum most free energy is a problem of long standing interest in protein structure prediction endeavors. Owing to the computational requirements in developing free energy estimates, scoring functions—energy based or statistical—have received considerable renewed attention in recent years for distinguishing native structures of proteins from non-native like structures. Several cleverly designed decoy sets, CASP (Critical Assessment of Techniques for Protein Structure Prediction) structures and homology based internet accessible three dimensional model builders are now available for validating the scoring functions. We describe here an all-atom energy based empirical scoring function and examine its performance on a wide series of publicly available decoys. Barring two protein sequences where native structure is ranked second and seventh, native is identified as the lowest energy structure in 67 protein sequences from among 61,659 decoys belonging to 12 different decoy sets. We further illustrate a potential application of the scoring function in bracketing native-like structures of two small mixed alpha/beta globular proteins starting from sequence and secondary structural information. The scoring function has been web enabled at www.scfbio-iitd.res.in/utility/proteomics/energy.jsp  相似文献   

15.
Weitao Sun  Jing He 《Biopolymers》2010,93(10):904-916
Residue clusters play essential role in stabilizing protein structures in the form of complex networks. We show that the cluster sizes in a native protein follow the log‐normal distribution for a dataset consisting of 424 proteins. To our knowledge, this is the first time of such fitting for the native structures. Based on log‐normal model, the asymptotically increasing mean cluster sizes produce a critical protein chain length of about 200 amino acids, beyond which length most globular proteins have nearly the same mean cluster sizes. This suggests that the larger proteins use a different packing mechanism than the smaller proteins. We confirmed the scale‐free property of the residue contact network for most of the protein structures in the dataset, although the violations were observed for the tightly packed proteins. Residue cluster network wheel (RCNW) is proposed to visualize the relationship between the multiple properties of the residue network such as the cluster size, the residue types and contacts, and the flexibility of the residue. We noticed that the residues with large cluster size have smaller Cα displacement measured using the normal mode analysis. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 904–916, 2010.  相似文献   

16.
Lee MC  Duan Y 《Proteins》2004,55(3):620-634
Recent works have shown the ability of physics-based potentials (e.g., CHARMM and OPLS-AA) and energy minimization to differentiate the native protein structures from large ensemble of non-native structures. In this study, we extended previous work by other authors and developed an energy scoring function using a new set of AMBER parameters (also recently developed in our laboratory) in conjunction with molecular dynamics and the Generalized Born solvent model. We evaluated the performance of our new scoring function by examining its ability to distinguish between the native and decoy protein structures. Here we present a systematic comparison of our results with those obtained with use of other physics-based potentials by previous authors. A total of 7 decoy sets, 117 protein sequences, and more than 41,000 structures were evaluated. The results of our study showed that our new scoring function represents a significant improvement over previously published physics-based scoring functions.  相似文献   

17.
Cooperative unfolding penalties are calculated by statistically evaluating an ensemble of denatured states derived from native structures. The ensemble of denatured states is determined by dividing the native protein into short contiguous segments and defining all possible combinations of native, i.e., interacting, and non-native, i.e., non-interacting, segments. We use a novel knowledge-based scoring function, derived from a set of non-homologous proteins in the Protein Data Bank, to describe the interactions among residues. This procedure is used for the structural identification of cooperative folding cores for four globular proteins: bovine pancreatic trypsin inhibitor, horse heart cytochrome c, French bean plastocyanin, and staphylococcal nuclease. The theoretical folding units are shown to correspond to regions that exhibit enhanced stability against denaturation as determined from experimental hydrogen exchange protection factors. Using a sequence similarity score for related sequences, we show that, in addition to residues necessary for enzymatic function, those amino acids comprising structurally important folding cores are also preferentially conserved during evolution. This implies that the identified folding cores may be part of an array of fundamental structural folding units.  相似文献   

18.
QMEAN: A comprehensive scoring function for model quality assessment   总被引:3,自引:0,他引:3  
  相似文献   

19.
《Proteins》2017,85(4):741-752
Protein–RNA docking is still an open question. One of the main challenges is to develop an effective scoring function that can discriminate near‐native structures from the incorrect ones. To solve the problem, we have constructed a knowledge‐based residue‐nucleotide pairwise potential with secondary structure information considered for nonribosomal protein–RNA docking. Here we developed a weighted combined scoring function RpveScore that consists of the pairwise potential and six physics‐based energy terms. The weights were optimized using the multiple linear regression method by fitting the scoring function to L_rmsd for the bound docking decoys from Benchmark II. The scoring functions were tested on 35 unbound docking cases. The results show that the scoring function RpveScore including all terms performs best. Also RpveScore was compared with the statistical mechanics‐based method derived potential ITScore‐PR, and the united atom‐based statistical potentials QUASI‐RNP and DARS‐RNP. The success rate of RpveScore is 71.6% for the top 1000 structures and the number of cases where a near‐native structure is ranked in top 30 is 25 out of 35 cases. For 32 systems (91.4%), RpveScore can find the binding mode in top 5 that has no lower than 50% native interface residues on protein and nucleotides on RNA. Additionally, it was found that the long‐range electrostatic attractive energy plays an important role in distinguishing near‐native structures from the incorrect ones. This work can be helpful for the development of protein–RNA docking methods and for the understanding of protein–RNA interactions. RpveScore program is available to the public at http://life.bjut.edu.cn/kxyj/kycg/2017116/14845362285362368_1.html Proteins 2017; 85:741–752. © 2016 Wiley Periodicals, Inc.  相似文献   

20.
Computational design of protein function involves a search for amino acids with the lowest energy subject to a set of constraints specifying function. In many cases a set of natural protein backbone structures, or “scaffolds”, are searched to find regions where functional sites (an enzyme active site, ligand binding pocket, protein – protein interaction region, etc.) can be placed, and the identities of the surrounding amino acids are optimized to satisfy functional constraints. Input native protein structures almost invariably have regions that score very poorly with the design force field, and any design based on these unmodified structures may result in mutations away from the native sequence solely as a result of the energetic strain. Because the input structure is already a stable protein, it is desirable to keep the total number of mutations to a minimum and to avoid mutations resulting from poorly-scoring input structures. Here we describe a protocol using cycles of minimization with combined backbone/sidechain restraints that is Pareto-optimal with respect to RMSD to the native structure and energetic strain reduction. The protocol should be broadly useful in the preparation of scaffold libraries for functional site design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号