首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The myogenic protein MyoD requires two nuclear histone acetyltransferases, CREB-binding protein (CBP)/p300 and PCAF, to transactivate muscle promoters. MyoD is acetylated by PCAF in vitro, which seems to increase its affinity for DNA. We here show that MyoD is constitutively acetylated in muscle cells. In vitro, MyoD is acetylated both by CBP/p300 and by PCAF on two lysines located at the boundary of the DNA binding domain. MyoD acetylation by CBP/p300 (as well as by PCAF) increases its activity on a muscle-specific promoter, as assessed by microinjection experiments. MyoD mutants that cannot be acetylated in vitro are not activated in the functional assay. Our results provide direct evidence that MyoD acetylation functionally activates the protein and show that both PCAF and CBP/p300 are candidate enzymes for MyoD acetylation in vivo.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
c-Abl function is strictly dependent on its subcellular localization. Using an in vitro approach, we identify c-Abl as a new substrate for p300, CBP (CREB-binding protein) and PCAF (p300/CBP-associated factor) histone acetyltransferases. Remarkably, acetylation markedly alters its subcellular localization. Point mutagenesis indicated that Lys 730, located in the second nuclear localization signal, is the main target of p300 activity. It has previously been reported that c-Abl accumulates in the cytoplasm during myogenic differentiation. Here, we show that c-Abl protein is acetylated at early stages of myogenic differentiation. Indeed, acetylation on Lys 730 drives c-Abl accumulation in the cytoplasm and promotes differentiation. Thus, Lys 730 acetylation is a novel post-translational modification of c-Abl and a novel mechanism for modulating its subcellular localization that contributes to myogenic differentiation.  相似文献   

14.
15.
16.
17.
18.
A viral mechanism for inhibition of p300 and PCAF acetyltransferase activity   总被引:48,自引:0,他引:48  
  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号