首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
荧光原位杂交(FISH)是在染色体、间期核和DNA纤维上定位特定DNA序列的一种有效而精确的分子细胞遗传学方法。20年来,植物荧光原位杂交技术发展迅速:以增加检测的靶位数为目的,发展了双色FISH、多色FISH和多探针FISH鸡尾酒技术;为增加很小染色体目标的检测灵敏度,发展了BAC-FISH和酪胺信号放大FISH(TSA-FISH)等技术;以提高相邻杂交信号的空间分辨力为主要目的,发展了高分辨的粗线期染色体FISH、间期核FISH、DNA纤维FISH和超伸展的流式分拣植物染色体FISH技术。在植物基因组分析中,FISH技术发挥了不可替代的重要作用,它可用于:物理定位DNA序列,并为染色体的识别提供有效的标记;对相同DNA序列进行比较物理定位,探讨植物基因组的进化;构建植物基因组的物理图谱;揭示特定染色体区域的DNA分子组织;分析间期核中染色质的组织和细胞周期中染色体的动态变化;鉴定植物转基因。  相似文献   

2.
Restriction-site associated DNA (RAD) sequencing is a powerful new method for targeted sequencing across the genomes of many individuals. This approach has broad potential for genetic analysis of non-model organisms including genotype-phenotype association mapping, phylogeography, population genetics and scaffolding genome assemblies through linkage mapping. We constructed a RAD library using genomic DNA from a Plutella xylostella (diamondback moth) backcross that segregated for resistance to the insecticide spinosad. Sequencing of 24 individuals was performed on a single Illumina GAIIx lane (51 base paired-end reads). Taking advantage of the lack of crossing over in homologous chromosomes in female Lepidoptera, 3,177 maternally inherited RAD alleles were assigned to the 31 chromosomes, enabling identification of the spinosad resistance and W/Z sex chromosomes. Paired-end reads for each RAD allele were assembled into contigs and compared to the genome of Bombyx mori (n = 28) using BLAST, revealing 28 homologous matches plus 3 expected fusion/breakage events which account for the difference in chromosome number. A genome-wide linkage map (1292 cM) was inferred with 2,878 segregating RAD alleles inherited from the backcross father, producing chromosome and location specific sequenced RAD markers. Here we have used RAD sequencing to construct a genetic linkage map de novo for an organism that has no previous genome data. Comparative analysis of P. xyloxtella linkage groups with B. mori chromosomes shows for the first time, genetic synteny appears common beyond the Macrolepidoptera. RAD sequencing is a powerful system capable of rapidly generating chromosome specific data for non-model organisms.  相似文献   

3.
Physical mapping and genome sequencing are underway for the ≈17 Gb wheat genome. Physical mapping methods independent of meiotic recombination, such as radiation hybrid (RH) mapping, will aid precise anchoring of BAC contigs in the large regions of suppressed recombination in Triticeae genomes. Reports of endosperm development following pollination with irradiated pollen at dosages that cause embryo abortion prompted us to investigate endosperm as a potential source of RH mapping germplasm. Here, we report a novel approach to construct RH based physical maps of all seven D-genome chromosomes of the hexaploid wheat ‘Chinese Spring’, simultaneously. An 81-member subset of endosperm samples derived from 20-Gy irradiated pollen was genotyped for deletions, and 737 markers were mapped on seven D-genome chromosomes. Analysis of well-defined regions of six chromosomes suggested a map resolution of ∼830 kb could be achieved; this estimate was validated with assays of markers from a sequenced contig. We estimate that the panel contains ∼6,000 deletion bins for D-genome chromosomes and will require ∼18,000 markers for high resolution mapping. Map-based deletion estimates revealed a majority of 1–20 Mb interstitial deletions suggesting mutagenic repair of double-strand breaks in pollen provides a useful resource for RH mapping and map based cloning studies.  相似文献   

4.
5.
The genus Gossypium, which comprises a divergent group of diploid species and several recently formed allotetraploids, offers an excellent opportunity to study polyploid genome evolution. In this study, chromosome structural variation among the A, At, and D genomes of Gossypium was evaluated by comparative genetic linkage mapping. We constructed a fully resolved RFLP linkage map for the diploid A genome consisting of 275 loci using an F2 interspecific Gossypium arboreum x Gossypium herbaceum family. The 13 chromosomes of the A genome are represented by 12 large linkage groups in our map, reflecting an expected interchromosomal translocation between G. arboreum and G. herbaceum. The A-genome chromosomes are largely collinear with the D genomes, save for a few small inversions. Although the 2 diploid mapping parents represent the closest living relatives of the allotetraploid At-genome progenitor, 2 translocations and 7 inversions were observed between the A and At genomes. The recombination rates are similar between the 2 diploid genomes; however, the At genome shows a 93% increase in recombination relative to its diploid progenitors. Elevated recombination in the Dt genome was reported previously. These data on the At genome thus indicate that elevated recombination was a general property of allotetraploidy in cotton.  相似文献   

6.
To estimate the possibility of plant genome mapping using human genome probes, the probes fluorescent in situ hybridization (FISH) of human 18S-28S rDNA (clon 22F9 from the LA-13NCO1 library) was carried out on chromosomes of the spring barley Hordeum vulgare L. As a control, wheat rDNA probe (clon pTa71) was taken. Hybridization of the wheat DNA probe revealed two major labelling sites on mitotic barley chromosomes 5I (7H) and 6I (6H), as well as several minor sites. With the human DNA probe, signals were detected in the major sites of the ribosomal genes on chromosomes 5I (7H) and 6I (6H) only when the chromosome preparations were obtained using an optimized technique with obligatory pepsin treatment followed by hybridization. Thus, this study demonstrates that physical mapping of plant chromosomes with human DNA probes that are 60 to 75% homologous to the plant genes is possible. It suggests principal opportunity for the FISH mapping of plant genomes using probes from human genome libraries, obtained in the course of the total sequencing of the human genomes and corresponding to the coding regions of genes with known functions.  相似文献   

7.
Next-generation sequencing (NGS) technologies have enabled high-throughput and low-cost generation of sequence data; however, de novo genome assembly remains a great challenge, particularly for large genomes. NGS short reads are often insufficient to create large contigs that span repeat sequences and to facilitate unambiguous assembly. Plant genomes are notorious for containing high quantities of repetitive elements, which combined with huge genome sizes, makes accurate assembly of these large and complex genomes intractable thus far. Using two-color genome mapping of tiling bacterial artificial chromosomes (BAC) clones on nanochannel arrays, we completed high-confidence assembly of a 2.1-Mb, highly repetitive region in the large and complex genome of Aegilops tauschii, the D-genome donor of hexaploid wheat (Triticum aestivum). Genome mapping is based on direct visualization of sequence motifs on single DNA molecules hundreds of kilobases in length. With the genome map as a scaffold, we anchored unplaced sequence contigs, validated the initial draft assembly, and resolved instances of misassembly, some involving contigs <2 kb long, to dramatically improve the assembly from 75% to 95% complete.  相似文献   

8.
To estimate the possibility of plant genome mapping using human genome probes, the probes fluorescent in situ hybridization (FISH) of human 18S–28S rDNA (clon 22F9 from the LA-13NCO1 library) was carried out on chromosomes of the spring barleyHordeum vulgareL. As a control, wheat rDNA probe (clon pTa71) was taken. Hybridization of the wheat DNA probe revealed two major labelling sites on mitotic barley chromosomes 5I (7H) and 6I (6H), as well as several minor sites. With the human DNA probe, signals were detected in the major sites of the ribosomal genes on chromosomes 5I (7H) and 6I (6H) only when the chromosome preparations were obtained using an optimized technique with obligatory pepsin treatment followed by hybridization. Thus, this study demonstrates that physical mapping of plant chromosomes with human DNA probes that are 60 to 70% homologous to the plant genes is possible. It suggests principal opportunity for the FISH mapping of plant genomes using probes from human genome libraries, obtained in the course of the total sequencing of the human genomes and corresponding to the coding regions of genes with known functions.  相似文献   

9.
Nuclear genomes of human, animals, and plants are organized into subunits called chromosomes. When isolated into aqueous suspension, mitotic chromosomes can be classified using flow cytometry according to light scatter and fluorescence parameters. Chromosomes of interest can be purified by flow sorting if they can be resolved from other chromosomes in a karyotype. The analysis and sorting are carried out at rates of 10(2)-10(4) chromosomes per second, and for complex genomes such as wheat the flow sorting technology has been ground-breaking in reducing genome complexity for genome sequencing. The high sample rate provides an attractive approach for karyotype analysis (flow karyotyping) and the purification of chromosomes in large numbers. In characterizing the chromosome complement of an organism, the high number that can be studied using flow cytometry allows for a statistically accurate analysis. Chromosome sorting plays a particularly important role in the analysis of nuclear genome structure and the analysis of particular and aberrant chromosomes. Other attractive but not well-explored features include the analysis of chromosomal proteins, chromosome ultrastructure, and high-resolution mapping using FISH. Recent results demonstrate that chromosome flow sorting can be coupled seamlessly with DNA array and next-generation sequencing technologies for high-throughput analyses. The main advantages are targeting the analysis to a genome region of interest and a significant reduction in sample complexity. As flow sorters can also sort single copies of chromosomes, shotgun sequencing DNA amplified from them enables the production of haplotype-resolved genome sequences. This review explains the principles of flow cytometric chromosome analysis and sorting (flow cytogenetics), discusses the major uses of this technology in genome analysis, and outlines future directions.  相似文献   

10.
C Zhou  W Dong  L Han  J Wei  L Jia  Y Tan  D Zhi  ZY Wang  G Xia 《PloS one》2012,7(7):e40214
To explore the feasibility of constructing a whole genome radiation hybrid (WGRH) map in plant species with large genomes, asymmetric somatic hybridization between wheat (Triticum aestivum L.) and Bupleurum scorzonerifolium Willd. was performed. The protoplasts of wheat were irradiated with ultraviolet light (UV) and gamma-ray and rescued by protoplast fusion using B. scorzonerifolium as the recipient. Assessment of SSR markers showed that the radiation hybrids have the average marker retention frequency of 15.5%. Two RH panels (RHPWI and RHPWII) that contained 92 and 184 radiation hybrids, respectively, were developed and used for mapping of 68 SSR markers in chromosome 5A of wheat. A total of 1557 and 2034 breaks were detected in each panel. The RH map of chromosome 5A based on RHPWII was constructed. The distance of the comprehensive map was 2103 cR and the approximate resolution was estimated to be ~501.6 kb/break. The RH panels evaluated in this study enabled us to order the ESTs in a single deletion bin or in the multiple bins cross the chromosome. These results demonstrated that RH mapping via protoplast fusion is feasible at the whole genome level for mapping purposes in wheat and the potential value of this mapping approach for the plant species with large genomes.  相似文献   

11.
Photoelectron imaging is a sensitive surface technique in which photons are used to excite electron emission. This novel method has been applied successfully in studies of relatively flat cultured cells, viruses, and protein-DNA complexes. However, rounded-up cell types such as tumor cells frequently are more difficult to image. By comparing photoelectron images of uncoated and metal-coated MCF-7 human breast carcinoma cells, it is shown that the problem is specimen charging rather than a fundamental limitation of the electron imaging process. This is confirmed by emission current measurements on uncoated monolayers of MCF-7 carcinoma cells and flatter, normal Wi-38 fibroblasts. We report here that sample charging in photoelectron microscopy can be eliminated in most specimens by simultaneous use of two light sources--the standard UV excitation source (e.g., 254 nm) and a longer wavelength light source (e.g., 325 nm). The reduction in sample charging results largely from enhanced photoconduction in the bulk sample and greatly extends the range of cells that can be examined by photoelectron imaging. The contributions of photoconductivity, the electric field of the imaging system, and the short escape depths of the photoelectrons combine to make photoelectron imaging a uniquely sensitive technique for the study of biological surfaces.  相似文献   

12.
Jackson SA  Cheng Z  Wang ML  Goodman HM  Jiang J 《Genetics》2000,156(2):833-838
Comparative genome studies are important contributors to our understanding of genome evolution. Most comparative genome studies in plants have been based on genetic mapping of homologous DNA loci in different genomes. Large-scale comparative physical mapping has been hindered by the lack of efficient and affordable techniques. We report here the adaptation of fluorescence in situ hybridization (FISH) techniques for comparative physical mapping between Arabidopsis thaliana and Brassica rapa. A set of six bacterial artificial chromosomes (BACs) representing a 431-kb contiguous region of chromosome 2 of A. thaliana was mapped on both chromosomes and DNA fibers of B. rapa. This DNA fragment has a single location in the A. thaliana genome, but hybridized to four to six B. rapa chromosomes, indicating multiple duplications in the B. rapa genome. The sizes of the fiber-FISH signals from the same BACs were not longer in B. rapa than those in A. thaliana, suggesting that this genomic region is duplicated but not expanded in the B. rapa genome. The comparative fiber-FISH mapping results support that chromosomal duplications, rather than regional expansion due to accumulation of repetitive sequences in the intergenic regions, played the major role in the evolution of the B. rapa genome.  相似文献   

13.
Rearrangements of the genome can be detected by microarray methods and massively parallel sequencing, which identify copy-number alterations and breakpoint junctions, but these techniques are poorly suited to reconstructing the long-range organization of rearranged chromosomes, for example, to distinguish between translocations and insertions. The single-DNA-molecule technique HAPPY mapping is a method for mapping normal genomes that should be able to analyse genome rearrangements, i.e. deviations from a known genome map, to assemble rearrangements into a long-range map. We applied HAPPY mapping to cancer cell lines to show that it could identify rearrangement of genomic segments, even in the presence of normal copies of the genome. We could distinguish a simple interstitial deletion from a copy-number loss at an inversion junction, and detect a known translocation. We could determine whether junctions detected by sequencing were on the same chromosome, by measuring their linkage to each other, and hence map the rearrangement. Finally, we mapped an uncharacterized reciprocal translocation in the T-47D breast cancer cell line to about 2 kb and hence cloned the translocation junctions. We conclude that HAPPY mapping is a versatile tool for determining the structure of rearrangements in the human genome.  相似文献   

14.
Symmetric and asymmetric somatic hybrids were produced via protoplast fusion between common wheat ( TRITICUM AESTIVUM L.) cv. "Jinan 177" and Italian ryegrass ( LOLIUM MULTIFLORUM Lam.). The ryegrass without or with UV irradiation was used as a donor, providing a small amount of chromatin. In these somatic hybrids, most ryegrass chromosomes have been confirmed preferential elimination and the somatic hybrid calli and plants showed wheat-like morphology. Some of the hybrid lines were used for the analysis of distribution and heredity of donor DNA in the hybrid genome and the possibility of establishing a radiation hybrid (RH) panel of the ryegrass in the present experiment. These hybrids, subcultured for two and three years, retained the ryegrass DNA examined by RFLP and GISH analysis, respectively. Distribution of the ryegrass DNA in the wheat genomes of 20 single-cell individuals, randomly selected from hybrid cell lines produced, were analyzed by 21 ryegrass genome specific SSR markers. The average frequencies of molecular marker retention in symmetric hybrid lines (UV 0), as well as asymmetric hybrid lines from UV 30 s and 1 min were 10.88, 15.48 and 33.86, respectively. It was suggested that the UV dose increased the introgression of donor DNA into wheat genome. The ryegrass SSR fragments in most asymmetric hybrid cell lines remained stable over a period of 2 approximately 3 years. This revealed that those asymmetric somatic hybrids are suitable for the introgression of ryegrass DNA into wheat, and for RH panel and RH mapping.  相似文献   

15.
Isolation of mitotic chromosomes using flow cytometry is an attractive way to dissect nuclear genomes into their individual chromosomal components or portions of them. This approach is especially useful in plants with complex genomes, where it offers a targeted and hence economical approach to genome analysis and gene cloning. In several plant species, DNA of flow-sorted chromosomes has been used for isolation of molecular markers from specific genome regions, for physical mapping using polymerase chain reaction (PCR) and fluorescence in situ hybridization (FISH), for integration of genetic and physical maps and for construction of chromosome-specific DNA libraries, including those cloned in bacterial artificial chromosome vectors. Until now, chromosome analysis and sorting using flow cytometry (flow cytogenetics) has found little application in barley (2n = 14, 1C ∼ 5,100 Mbp) because of the impossibility of discriminating and sorting individual chromosomes, except for the smallest chromosome 1H and some translocation chromosomes with DNA content significantly different from the remaining chromosomes. In this work, we demonstrate that wheat–barley ditelosomic addition lines can be used to sort any arm of barley chromosomes 2H–7H. Thus, the barley genome can be dissected into fractions representing only about 6–12% of the total genome. This advance makes the flow cytogenetics an attractive tool, which may greatly facilitate genome analysis and gene cloning in barley.  相似文献   

16.
ZOO-FISH with chromosome-specific DNA libraries (CSLs) from individual flow-sorted human chromosomes was applied on porcine metaphase chromosomes to establish segment homology between the pig and human karyotypes. Forty-seven porcine chromosomal segments corresponding to all human chromosomes except the Y were delineated, resulting in a nearly complete coverage of the porcine karyotype. The syntenic segments detected were further confirmed by the gene mapping information available in the two species. A map demarcating physical boundaries of human homologies on individual pig chromosomes is complemented with a detail survey of the physical and genetic linkage mapping data in the two species. The resultant map, thus, provides a comprehensive and updated comparative status of the human and porcine genomes. Received: 9 September 1995 / Accepted: 4 December 1995  相似文献   

17.
Molecular mapping of rice chromosomes   总被引:108,自引:0,他引:108  
Summary We report the construction of an RFLP genetic map of rice (Oryza sativa) chromosomes. The map is comprised of 135 loci corresponding to clones selected from a PstI genomic library. This molecular map covers 1,389 cM of the rice genome and exceeds the current classical maps by more than 20%. The map was generated from F2 segregation data (50 individuals) from a cross between an indica and javanica rice cultivar. Primary trisomics were used to assign linkage groups to each of the 12 rice chromosomes. Seventy-eight percent of the clones assayed revealed RFLPs between the two parental cultivars, indicating that rice contains a significant amount of RFLP variation. Strong correlations between size of hybridizing restriction fragments and level of polymorphism indicate that a significant proportion of the RFLPs in rice are generated by insertions/delections. This conclusion is supported by the occurrence of null alleles for some clones (presumably created by insertion or deletion events). One clone, RG229, hybridized to sequences in both the indica and javanica genomes, which have apparently transposed since the divergence of the two cultivars from their last common ancestor, providing evidence for sequence movement in rice. As a by product of this mapping project, we have discovered that rice DNA is less C-methylated than tomato or maize DNA. Our results also suggest the notion that a large fraction of the rice genome (approximately 50%) is single copy.  相似文献   

18.
19.
Deng X  Deng X  Rayner S  Liu X  Zhang Q  Yang Y  Li N 《Genomics》2008,91(5):476-483
The DHPC (DNA Hilbert-Peano curve) is a new tool for visualizing large-scale genome sequences by mapping sequences into a two-dimensional square. It utilizes the space-filling function of Hilbert-Peano mapping. By applying a Gauss smoothing technique and a user-defined color function, a large-scale genome sequence can be mapped into a two-dimensional color image. In the calculated DHPCs, many genome characteristics are revealed. In this article we introduce the method and show how DHPCs may be used to identify regions of different base composition. The power of the method is demonstrated by presenting multiple examples such as repeating sequences, degree of base bias, regions of homogeneity and their boundaries, and mark of annotated segments. We also present several genome curves generated by DHPC to demonstrate how DHPC can be used to find previously unidentified sequence features in these genomes.  相似文献   

20.
Physical mapping of the rice genome with BACs   总被引:10,自引:0,他引:10  
Zhang  Hong-Bin  Wing  Rod A. 《Plant molecular biology》1997,35(1-2):115-127
The development of genetics in this century has been catapulted forward by several milestones: rediscovery of Mendel's laws, determination of DNA as the genetic material, discovery of the double-helix structure of DNA and its implications for genetic behavior, and most recently, analysis of restriction fragment length polymorphisms (RFLPs). Each of these milestones has generated a huge wave of progress in genetics. Consequently, our understanding of organismal genetics now extends from phenotypes to their molecular genetic basis. It is now clear that the next wave of progress in genetics will hinge on genome molecular physical mapping, since a genome physical map will provide an invaluable, readily accessible system for many detailed genetic studies and isolation of many genes of economic or biological importance. Recent development of large-DNA fragment (>100 kb) manipulation and cloning technologies, such as pulsed-field gel electrophoresis (PFGE), and yeast artificial chromosome (YAC) and bacterial artificial chromosome (BAC) cloning, has provided the powerful tools needed to generate molecular physical maps for higher-organism genomes. This chapter will discuss (1) an ideal physical map of plant genome and its applications in plant genetic and biological studies, (2) reviews on physical mapping of the genomes of Caenorhabditis elegans, Arabidopsis thaliana, and man, (3) large-insert DNA libraries: cosmid, YAC and BAC, and genome physical mapping, (4) physical mapping of the rice genome with BACs, and (5) perspectives on the physical mapping of the rice genome with BACs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号