首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Mucopolysaccharidosis VI (MPS VI), due to recessively inherited 4‐sulfatase (4S) deficiency, results in lysosomal storage of dermatan sulfate in numerous tissues. Retinal involvement is limited to the retinal pigment epithelium (RPE). This study aimed to determine whether recombinant adeno‐associated virus (AAV)‐mediated delivery of 4S would reverse the RPE pathology seen in MPS VI cats.

Methods

AAV.f4S, containing the feline 4S cDNA, was delivered unilaterally to eyes of affected cats by subretinal or intravitreal injection. Contralateral eyes received AAV with the green fluorescent protein (GFP) reporter gene as control. At 2–11 months post‐injection, the cats were sacrificed and the treatment effects were evaluated histologically.

Results

By ophthalmoscopy and histological analyses, GFP was evident as early as 4 weeks and persisted through the latest time point (11 months). Untreated and AAV.GFP‐treated diseased retinas contained massively hypertrophied RPE cells secondary to accumulation of dilated lysosomal inclusions containing dermatan sulfate. MPS VI eyes treated subretinally with AAV.f4S had minimal RPE cell inclusions and, consequently, were not hypertrophied.

Conclusions

AAV‐mediated subretinal delivery of f4S provided correction of the disease phenotype in RPE cells of feline MPS VI, supporting the utility of AAV as a vector for the treatment of RPE‐specific as well as lysosomal storage diseases. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

2.

Background

Prenatal somatic gene therapy has been considered for genetic disorders presenting with morbidity at birth. Haemophilia is associated with an increased risk of catastrophic perinatal bleeding complications such as intracranial haemorrhage, which could be prevented by gene transfer in utero. Prenatal gene therapy may be more promising than postnatal treatment, as the fetus may be more amenable to uptake and integration of therapeutic DNA and the immaturity of its immune system may permit life‐long immune tolerance of the transgenic protein, thus avoiding the dominant problem in haemophilia treatment, the formation of inhibitory antibodies.

Methods

Adenovirus serotype 5‐derived or AAV serotype 2‐derived vectors carrying human clotting factor IX (hfIX) cDNA or a reporter gene were administered intramuscularly, intraperitoneally or intravascularly to late‐gestation mouse fetuses. Both vector types were evaluated with respect to the kinetics of hfIX delivery to the systemic circulation and possible immune responses against the vector or the transgene product.

Results

Mice treated in utero by intramuscular injection of an adenoviral vector carrying hfIX cDNA exhibited high‐level gene expression at birth and therapeutic – albeit continuously decreasing – plasma concentrations of hfIX over the entire 6 months of the study. Adenoviral vector spread to multiple organs was detected by polymerase chain reaction (PCR). Intramuscular, intraperitoneal or intravascular application of AAV vectors carrying hfIX cDNA led to much lower plasma concentrations of hfIX shortly after birth, which appeared to decline during the first month of life but stabilized in some of the mice at detectable levels. No signs of immune responses were found, either against the different viral vectors or against hfIX.

Conclusion

This study demonstrates for the first time that sustained systemic delivery of a therapeutic protein can be achieved by prenatal gene transfer. It thus shows the feasibility of gene therapy in utero and provides a basis for considering this concept as a preventive therapeutic strategy for haemophilia and perhaps also for other plasma protein deficiencies. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

3.

Background

The helper‐dependent (HD) adenoviral (Ad) vector relies on a helper virus to provide viral proteins for vector amplification. HD‐Ad vectors can significantly increase therapeutic gene expression and improve safety. However, the yield of an HD‐Ad vector is generally lower than that of an E1‐deleted first‐generation vector, likely due to the alterations in viral E3 or packaging regions of a helper virus that attenuate its replication and complementing for an HD‐Ad vector.

Methods

To study this question and improve HD‐Ad vector production, we have generated four different helper viruses with a wild‐type or deleted E3 region, and with a relocated loxP. We have also constructed a first‐generation vector with a wild‐type E3 region and without the loxP site. We compared the replication of these viruses in Cre‐positive and ‐negative cells and studied their complementing for HD‐Ad vector production.

Results

Viruses with deleted E3 formed smaller plaques and produced lower titer compared with viruses containing the E3 region. The site where a loxP is inserted can also affect virus replication. Higher yield of HD‐Ad vector was obtained when a helper virus with wild‐type E3 was used. We also showed that deletion of the packaging signal in a helper virus through loxP/Cre interaction decreased the viral DNA complementing ability.

Conclusions

Although the E3 region is not essential for adenovirus replication in vivo, deletion of this region attenuates virus replication. Production of HD‐Ad vector can be further improved by modifications in helper virus structure. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

4.

Background

Adeno‐associated virus serotype 2 (AAV2) vectors show considerable promise for ocular gene transfer. However, one potential barrier to efficacious long‐term therapy is the development of immune responses against the vector or transgene product.

Methods

We evaluated cellular and humoural responses in mice following both single and repeated subretinal administration of AAV2, and examined their effects on RPE65 and green fluorescent protein transgene expression.

Results

Following subretinal administration of vector, splenocytes and T‐cells from draining lymph nodes showed minimal activation following stimulation by co‐culture with AAV2. Neutralizing antibodies (NAbs) were not detected in the ocular fluids of any mice receiving AAV2 or in the serum of mice receiving a lower dose. NAbs were present in the serum of a proportion of mice receiving a higher dose of the vector. Furthermore, no differences in immunoglobulin titre in serum or ocular fluids against RPE65 protein or AAV2 capsid between treated and control mice were detected. Histological examination showed no evidence of retinal toxicity or leukocyte infiltration compared to uninjected eyes. Repeat administration of low‐dose AAV.hRPE65.hRPE65 to both eyes of RPE65?/? mice resulted in transgene expression and functional rescue, but re‐administration of high‐dose AAV2 resulted in boosted NAb titres and variable transgene expression in the second injected eye.

Conclusions

These data, which were obtained in mice, suggest that, following subretinal injection, immune responses to AAV2 are dose‐dependent. Low‐dose AAV2 is well tolerated in the eye, with minimal immune responses, and transgene expression after repeat administration of vector is achievable. Higher doses lead to the expression of NAbs that reduce the efficacy of repeated vector administration. Copyright © 2009 John Wiley & Sons, Ltd.
  相似文献   

5.
6.
7.
8.
9.

Background

Helper‐dependent, or gutted, adenoviruses (Ad) lack viral coding sequences, resulting in reduced immunotoxicity compared with conventional Ad vectors. Gutted Ad growth requires a conventional Ad to supply replication and packaging functions in trans. Methods that allow high‐titer growth of gutted vectors while reducing helper contamination, and which use safer helper viruses, will facilitate the use of gutted Ad vectors in vivo.

Methods

Replication‐defective helper viruses were generated that are deleted for Ad E1, E2b and E3 genes, but which contain loxP sites flanking the packaging signal. Complementing Ad packaging cell lines (C7‐cre cells) were also generated by transfecting 293 cells with the Ad E2b genes encoding DNA polymerase and pre‐terminal protein, and with a cre‐recombinase plasmid.

Results

We show that C7‐cre cells allow efficient production of gutted Ad using ΔE1 + ΔE2b + ΔE3 helper viruses whose growth can be limited by cre‐loxP‐mediated excision of the packaging signal. Gutted Ad vectors carrying ~28 kb cassettes expressing full‐length dystrophin were prepared at high titers, similar to those obtained with E2b+ helpers, with a resulting helper contamination of <1%.

Conclusions

These new packaging cell lines and helper viruses offer several significant advantages for gutted Ad vector production. They allow gutted virus amplification using a reduced number of passages, which should reduce the chances of selecting rearranged products. Furthermore, the residual helper contamination in gutted vector preparations should be less able to elicit immunological reactions upon delivery to tissues, since E2b‐deleted vectors display a profound reduction in viral gene expression. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

10.

Background

Materno‐fetal transfer of intravenously administered liposome‐plasmid DNA complexes has been demonstrated only in mice. Studies on its materno‐fetal transfer in the pregnant monkey model is needed because of critical differences in placental structure between primates including humans and rodents.

Methods

The reporter plasmid pEGFP‐C1 was formulated in cationic lipid containing polybrene and vesicular stomatitis virus G protein. The fusogenic liposome‐plasmid DNA complexes were intradermally injected into pregnant common marmosets (N=2), a New World monkey, near term. DNA extracted from fetal tissues was subjected to PCR for detection of the egfp gene. Confocal microscopy and immunostaining were performed to determine the sites of transgene expression in the fetal organs.

Results

The egfp gene was detected in fetal blood and major organs (heart, liver, lung). The encoded protein was mainly produced in the endothelial cells of blood vessels in the fetal lungs.

Conclusions

This is the first report on materno‐fetal transfer of intradermally administered fusogenic liposome‐plasmid DNA complexes and fetal expression of a transgene in primates. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

11.

Background

Dry powder dispersion devices offer potential for delivering therapeutic macromolecules to the pulmonary epithelia. Previously, freeze‐drying (lyophilisation) has been the accepted method for preparing dried formulations of proteins and non‐viral gene vectors despite the respirability of such powders being inadequate without further processing. In this study we compare the utility of freeze‐drying and spray‐drying, a one‐step process for producing dry and respirable powders, as methods for preparing non‐viral respiratory gene delivery systems.

Methods

Lipid:polycation:pDNA (LPD) vectors comprising 1,2‐dioleoyl‐3‐trimethylammoniumpropane (DOTAP), protamine sulphate and pEGFP‐N1 in 3% lactose solution were either snap‐frozen and lyophilised or spray‐dried. Lyophilised powder was used as recovered or following coarse grinding. Structural integrity of dehydrated pDNA was assessed by agarose gel electrophoresis and powder particle size determined by laser diffraction. The apparent structure of the systems was visualised by scanning and transmission electron microscopy with the biological functionality quantified in vitro (A549 human lung epithelial cell line) by Green Fluorescent Protein (GFP) associated fluorescence.

Results

Lyophilisation produced large, irregularly shaped particles prior to (mean diameter ~21 µm) and following (mean diameter ~18 µm) coarse grinding. Spray‐drying produced uniformly shaped spherical particles (mean diameter ~4 µm). All dehydrated formulations mediated reporter gene expression in A549 cells with the spray‐dried formulation generally proving superior even when compared with freshly prepared LPD complexes. Biological functionality of the LPD dry powders was not adversely affected following 3 months storage.

Conclusions

Spray‐drying has utility for producing stable, efficient and potentially respirable non‐viral dry powder systems for respiratory gene delivery. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

12.

BACKGROUND

Folic acid is essential for the development of the nervous system and other associated structures. Mice deficient in the folic acid‐binding protein one (Folbp1) gene display multiple developmental abnormalities, including neural and craniofacial defects. To better understand potential interactions between Folbp1 gene and selected genes involved in neural and craniofacial morphogenesis, we evaluated the expression patterns of a panel of crucial differentiation markers (Pax‐3, En‐2, Hox‐a1, Shh, Bmp‐4, Wnt‐1, and Pax‐1).

METHODS

Folbp1 mice were supplemented with low dosages of folinic acid to rescue nullizygotes from dying in utero before gestational day 10. The gene marker analyses were carried out by in situ hybridization.

RESULTS

In nullizygote embryos with open cranial neural tube defects, the downregulation of Pax‐3 and En‐2 in the impaired midbrain, along with an observed upregulation of the ventralizing marker Shh in the expanded floor plate, suggested an important regulatory interaction among these three genes. Moreover, the nullizygotes also exhibit craniofacial abnormalities, such as cleft lip and palate. Pax‐3 signals in the impaired medial nasal primordia were significantly increased, whereas Pax‐1 showed no expression in the undeveloped lateral nasal processes. Although Shh was downregulated, Bmp‐4 was strongly expressed in the medial and lateral nasal processes, highlighting the antagonistic activities of these molecules.

CONCLUSIONS

Impairment of Folbp1 gene function adversely impacts the expression of several critical signaling molecules. Mis‐expression of these molecules, perhaps mediated by Shh, may potentially contribute to the observed failure of neural tube closure and the development of craniofacial defects in the mutant mice. Birth Defects Research (Part A) 67:209–218, 2003. © 2003 Wiley‐Liss, Inc.
  相似文献   

13.

Background

Kidney targeted gene transfer has been attempted by many researchers over the last 10 years; however, unfortunately, no reliable technique for gene transfer to the kidney has been established. At experimental level several in vivo gene transfer methods have been reported.

Methods

We were the first to report successful in vivo gene transfer into the kidney using the HVJ‐liposome method. Since then, this method has been modified to achieve highly efficient gene transfer. In this study, we have developed a renal glomerulus‐specific gene transfer method using HVJ‐liposomes with anti‐Thy 1 antibody, OX‐7.

Results

Following systemic delivery of fluoroisothiocyanate (FITC)‐labeled oligodeoxynucleotides (ODN) by HVJ‐liposomes coupled with OX‐7, we observed fluorescence in renal glomeruli from 2 h post‐administration. To examine the efficacy of this delivery system, NF‐κB or scrambled (SD) decoy ODN was administered by HVJ‐liposomes coupled with OX‐7 into a crescent glomerulonephritis, anti‐g lomerular b asement m embrane (GBM) model. Animals given SD decoy ODN developed severe glomerulonephritis by day 7 with heavy albuminuria, glomerular crescent formation and up‐regulated renal expression of IL‐1β and ICAM‐1. In contrast, NF‐κB decoy ODN treatment substantially inhibited the disease with a reduction in alubuminuria, histological damage and the renal expression of inflammatory cytokines.

Conclusions

This study has demonstrated that systemic delivery of HVJ‐liposomes coupled with OX‐7 results in efficient ODN transfer in rat glomeruli. NF‐κB, but not SD decoy ODN administered systemically via HVJ‐liposomes complexed with OX‐7 showed clear therapeutic potential for glomerulonephritis. This novel ODN transfer method combined with decoy strategy has the potential to lead to the establishment of a new therapeutic approach to glomerular diseases. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

14.

Aim

To attack a widespread myth.

Location

World‐wide.

Methods

Simple mathematical logical and empirical examples.

Results

As both species and area are finite and non‐negative, the species–area relationship is limited at both ends. The log species–log area relationship is normally effectively linear on scales from about 1 ha to 107 km2. There are no asymptotes. At the intercontinental scale it may get steeper; at small scales it may in different cases get steeper or shallower or maintain its slope.

Main conclusion

The species–area relationship does not have an asymptote.
  相似文献   

15.
16.

Background

Retroviral particles that are inappropriately enveloped can transduce target cells if pre‐associated with cationic liposomes. This study optimises and addresses the mechanism of liposome‐enhanced gene delivery, and explores the potential for such agents to compensate for fusion deficiency associated with chimaeric envelope proteins.

Methods

Particles bearing wild‐type, chimaeric or no envelope proteins were complexed with DOTAP or DC‐Chol/DOPE cationic liposomes and added to target cells for various times. Particle binding was determined by detection of cell‐associated capsid protein and infectivity was measured histochemically.

Results

Stable association of cationic liposomes with retrovirus particles significantly enhanced their binding rate to target cells in proportion to the increase of transduction kinetics for infectious virus. Binding of virus was equivalent with or without envelope protein and/or virus receptor, indicating that a non‐specific interaction precedes receptor recognition. Non‐infectious combinations were rescued by the intrinsic fusogenicity of the cationic liposomes, which enabled entry of the viral core, but left subsequent events unaltered. The optimised transduction rate with non‐enveloped particles and DOTAP approached that of amphotropic‐enveloped virus in some cases, although the effect was target‐cell‐dependent. DC‐Chol/DOPE was less potent at direct fusion but was able to enhance 600‐fold the receptor‐dependent action of chimaeric envelopes that were deficient in fusion by virtue of the addition of targeting domains.

Conclusions

These data have implications for the development of retroviral vector targeting strategies from the perspectives of the specificity of target cell interaction and compensating for chimaeric envelope fusion deficiency. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

17.

Background

Several approaches for gene therapy of cystic fibrosis using viral and non‐viral vectors are currently being undertaken. Nevertheless, the present data suggest that vectors currently being used will either have to be further modified or, alternatively, novel vector systems need to be developed. Recently, bacteria have been proven as suitable vehicles for DNA transfer to a wide variety of eukaryotic cells. In this study, we assessed the ability of the facultative intracellular pathogen Listeria monocytogenes to deliver a cDNA encoding the human cystic fibrosis transmembrane conductance regulator (CFTR) to CHO‐K1 cells, since these cells have been extensively used for heterologous CFTR expression.

Methods

An established in vitro gene transfer system based on antibiotic‐mediated lysis of intracellular L. monocytogenes was exploited to transfer eukaryotic expression plasmids. Transient as well as stable CFTR transgene expression was analyzed by microscopical and biochemical methods; functionality was tested by whole‐cell patch‐clamp recordings.

Results

L. monocytogenes mediated gene transfer to CHO‐K1 cells was facilitated by an improved transfection protocol. In addition, the use of the isogenic mutant L. monocytogenes hlyW491A, engineered to produce a hemolysin variant with low toxigenic activity, greatly enhanced the efficiency of gene transfer. This strain allowed the transfer of functional CFTR to CHO‐K1 cells.

Conclusions

This is the first demonstration of L. monoyctogenes mediated CFTR transgene transfer. The successful in vitro transfer suggests that L. monocytogenes might be a potential vector for cystic fibrosis gene therapy or alternative applications and deserves further investigation in vitro as well as in vivo. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

18.

Background

Polyethylenimines (PEIs) and cationic polymers have been used successfully in gene delivery. In earlier reports, only large PEIs (MW>10 000) have shown significant transfection efficiency. In the present study, the roles of small PEIs (MW 700 and 2000) were studied as additional compounds to see if they can improve gene delivery with cationic liposomes.

Methods

The TKBPVlacZ expression plasmid was transfected in the CV1‐P (monkey fibroblastoma) and SMC (rabbit smooth muscle) cell lines using various combinations of PEIs (MW 700, 2000, and 25 000) and Dosper liposomes. The transfection efficiency was determined with the fluorometric ONPG (o‐nitrophenol‐β‐D ‐galactopyranoside) assay and histochemical X‐gal staining. The toxicity of the transfection reagents was estimated by the MTT [3‐(4,5‐dimethylthiazolyl‐2)‐2,5‐diphenyl tetrazolium bromide] assay.

Results

Transfection of TKBPVlacZ plasmid by the small PEIs (MW 700 and 2000) combined with Dosper liposomes was associated with high expression of the lacZ reporter gene in the CV1‐P and SMC cell lines. The transfection efficiencies of the low‐molecular‐weight PEI/liposome combinations were several fold higher than those of PEIs or liposomes alone. PEI/liposome combinations had no toxicity on the cell lines tested.

Conclusions

The low‐molecular‐weight PEIs could be used successfully for gene delivery when combined with the cationic liposomes, resulting in a synergistic increase of the transfection efficiency in both cell lines studied. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

19.

Background

Insulin deficiency is currently treated with pharmacological insulin secretagogues, insulin injections or islet transplants. Secondary failure of pharmacological agents is common; insulin injections often fail to achieve euglycemic control; and islet transplants are rare. Non‐β cells capable of regulated insulin secretion in vivo could be a functional cure for diabetes. Hepatocytes are good candidates, being naturally glucose‐responsive, protein‐secreting cells, while the liver is positioned to receive direct nutrient signals that regulate insulin production.

Methods

Human liver‐derived Chang cells were modified with a plasmid construct in which a bifunctional promoter comprising carbohydrate response elements and the human metallothionein IIA promoter controlled human proinsulin cDNA expression. Secretory responses of stable cell clones were characterized in vitro and in vivo by proinsulin radioimmunoassay.

Results

Transfected Chang cells secreted 5–8 pmol proinsulin/106 cells per 24 h in continuous passage for at least a year in response to 5–25 mM glucose and 10–90 µM zinc in vitro. Glucose and zinc synergistically increased proinsulin production by up to 30‐fold. Non‐glucose secretagogues were also active. Glucose transporter 2 (GLUT2) and glucokinase cDNA co‐transfection enhanced glucose responsiveness. Intraperitoneally implanted Chang cells secreted proinsulin in scid and Balb/c mice. Serum proinsulin levels were further increased 1.3‐fold (p<0.05) after glucose and 1.4‐ to 1.6‐fold (p<0.005) after zinc administration in vivo.

Conclusions

These results are the first to demonstrate stable proinsulin production in a human liver‐derived cell line with activity in vitro and in vivo and provide a basis for engineering hepatocytes as in vivo bioimplants for future diabetes treatment. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

20.

Background

We studied the ability of adenovirus type 5 (Ad5) to encapsidate new cellular ligands carried by their fibers to yield functional retargeted vectors for gene therapy. Recombinant Ad5 fibers containing shaft repeats 1 to 7 and an extrinsic trimerization motif, and terminated by its native knob or amino acid motifs containing RGD, have been rescued into infectious virions.

Methods

Polypeptide ligands of cell surface molecules, including single‐chain antibodies or epidermal growth factor, were cloned into recombinant fibers. Phenotypic analysis of fiber constructs and rescuing into the Ad5 genome were performed. Recombinant viruses were characterized with reference to fiber content, growth rate and infectivity.

Results

A major limiting factor for recovering viable recombinant Ad5 carrying fiber‐fused polypeptide ligands was apparently the ability of the ligand to fold correctly within the cellular cytoplasm. This constraint has previously not been systematically evaluated in the literature. Phenotypic analysis of the fiber‐ligand fusions showed that their degree of cytoplasmic solubility correlated with their ability to yield viable Ad5 vectors. Our results suggested that the fiber manipulations diminish virus growth rate, probably through different, opposing effects: (i) the reduced shaft length increases fiber solubility in the absence of the knob but (ii) diminishes virus entry, and (iii) the absence of the knob alters the overall protein composition of the virion and decreases its fiber copy number.

Conclusions

Based on our findings, cytoplasmic solubility and cytoplasmic ligand reactivity of fiber‐ligand fusion proteins are the best prediction criterion for viability and recovery of genetically retargeted Ad vectors. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号